Maintaining Uniform Performance with Mixed Brand Components

Maintaining Uniform Performance with Mixed Brand Components

Overview of HVAC needs specific to mobile homes

In the world of heating, ventilation, and air conditioning (HVAC) systems, maintaining uniform performance is critical for ensuring efficiency, comfort, and longevity. Emergency repairs are often needed during extreme weather events hvac mobile home gas. Imagine an orchestra where each instrument plays in harmony; similarly, every component within an HVAC system must function seamlessly together to achieve optimal results. However, when dealing with mixed brand components, achieving this uniformity can present unique challenges.


First and foremost, the importance of uniform performance in HVAC systems cannot be overstated. It ensures that the environment remains consistently comfortable by maintaining stable temperatures and humidity levels. This not only enhances occupant comfort but also aids in energy conservation by preventing the system from working harder than necessary to compensate for inefficiencies or imbalances. Moreover, consistent performance reduces wear and tear on individual components, extending their lifespan and reducing maintenance costs over time.


When incorporating mixed brand components into an HVAC system, compatibility becomes a key concern. Each manufacturer designs their products with specific standards and specifications in mind. Mixing brands can lead to mismatches in component sizes, power requirements, or control mechanisms. For instance, a blower motor from one brand might not operate optimally with a control board from another due to differences in voltage requirements or communication protocols.


To overcome these challenges and maintain uniform performance with mixed brand components, several strategies can be employed. First is thorough research; understanding the specifications of each component ensures they meet the necessary criteria for compatibility. Consulting with knowledgeable professionals who have experience integrating different brands can also provide valuable insights and recommendations.


Additionally, advances in technology have led to the development of universal controls and adaptable interfaces designed to bridge gaps between disparate components. These solutions help synchronize operations across different brands by standardizing communication protocols or adjusting performance parameters dynamically.


Routine maintenance is another crucial factor in sustaining uniform performance across mixed brand systems. Regular inspections allow early detection of potential issues such as leaks or blockages that could disrupt system balance. Cleaning filters and coils frequently prevents buildup that might impede airflow or heat exchange efficiency.


Finally, documenting all modifications made during installation helps track any changes affecting system dynamics over time-vital information when troubleshooting future problems.


In conclusion, while integrating mixed brand components into an HVAC system poses certain challenges regarding maintaining uniform performance-by prioritizing compatibility research utilizing adaptive technologies conducting routine maintenance practices-and leveraging expert knowledge-it's entirely possible to create a harmonious multi-brand ensemble capable of delivering consistent comfort efficiently year-round just like how every musician contributes towards creating beautiful symphony music piece despite playing different instruments under single conductor's guidance!

In today's dynamic market, companies often find themselves integrating various brand components in an effort to maximize efficiency and leverage diverse strengths. However, maintaining uniform performance with mixed brand components presents a unique set of challenges that cannot be overlooked. The pursuit of seamless integration is akin to assembling a puzzle where each piece, or component, must fit perfectly to create a coherent picture.


First and foremost, the challenge lies in aligning disparate brand identities. Each brand component carries its own legacy, culture, and operational ethos. When these components are brought together under one umbrella, the risk of clashing identities emerges. For instance, merging the innovative spirit of a tech startup with the traditional practices of a well-established corporation requires careful navigation to ensure that neither loses its inherent value while embracing new synergies.


Additionally, technological compatibility can pose significant hurdles. Different brands often operate on varied platforms and systems tailored to their specific needs. Ensuring that these technologies communicate effectively without sacrificing performance or security is crucial but complex. The process involves not only technical adjustments but also training employees to adapt to new tools and processes without disrupting workflow.


Another critical aspect is maintaining consistent customer experience across all touchpoints. With mixed brand components, there is potential for inconsistencies in service delivery or product quality that can confuse or alienate customers. Establishing unified standards while respecting each component's distinct characteristics demands meticulous planning and continuous monitoring.


Furthermore, there are logistical considerations such as supply chain integration and resource allocation. Divergent supply chain strategies may lead to inefficiencies if not harmonized properly. Similarly, resource distribution must be balanced so that no single component overshadows others in terms of budget or manpower allocation.


Finally, communication plays a pivotal role in overcoming these challenges. Transparent dialogue among stakeholders fosters understanding and collaboration essential for successful integration. Creating cross-functional teams can help bridge gaps between different corporate cultures and operational methodologies.


In conclusion, integrating different brand components while maintaining uniform performance is an intricate endeavor requiring strategic foresight and adaptability. It involves navigating cultural differences, ensuring technological harmony, delivering consistent customer experiences, managing logistics efficiently, and fostering open communication channels. By addressing these challenges head-on with thoughtful strategies and a commitment to collaboration, organizations can harness the full potential of their diverse brand elements to drive sustained success in an increasingly competitive landscape.

Top HVAC Brands Offering Exclusive Payment Plans for Mobile Homes

Top HVAC Brands Offering Exclusive Payment Plans for Mobile Homes

In today's fast-paced world, homeowners are consistently seeking solutions that blend quality and affordability, especially when it comes to vital home systems like heating, ventilation, and air conditioning (HVAC).. For owners of mobile homes, finding the right HVAC system can be a particular challenge due to unique space constraints and mobility considerations.

Posted by on 2024-12-30

Understanding Brand-Specific Compatibility for Mobile Home HVAC Installations

Understanding Brand-Specific Compatibility for Mobile Home HVAC Installations

When it comes to mobile home HVAC installations, understanding brand-specific compatibility is crucial for ensuring both proper installation and long-term maintenance.. Mobile homes have unique architectural and structural characteristics that require tailored heating and cooling solutions.

Posted by on 2024-12-30

Understanding Financing Options for Mobile Home HVAC

In today's fast-paced world, where technological advancements are continually pushing the boundaries of innovation, consumers often find themselves mixing and matching components from different brands to create customized solutions. Whether it's in the realm of technology, automotive, or home appliances, the allure of combining the best features from various brands can be irresistible. However, achieving uniform performance with mixed brand components is not always straightforward. There are several key factors that one must consider to ensure a harmonious integration.


Firstly, compatibility should be at the forefront of any consideration when mixing brands. Not all components are designed to work seamlessly with those from other manufacturers. It's essential to research and understand if the components you intend to combine have compatible interfaces or standardized connections. For instance, when assembling a computer system using parts from multiple brands, ensuring that the motherboard supports the RAM and processor specifications is crucial for optimal performance.


Secondly, quality consistency across different components plays a significant role in maintaining uniform performance. While one brand may offer superior durability in one component type, another might excel in efficiency or speed elsewhere. It's vital to assess whether these attributes align well together without causing bottlenecks or inefficiencies in your overall setup. For example, pairing a high-speed solid-state drive with an outdated processor could negate any potential benefits due to limitations imposed by older technologies.


Another critical factor is warranty and support services provided by different manufacturers. When integrating mixed brand components, disparate warranty terms can complicate troubleshooting and repairs. Ensuring that each manufacturer's support policies align well enough to address potential issues comprehensively can save time and resources in the long run.


Additionally, considering software compatibility is equally important as hardware interoperability. Different brands may have unique drivers or proprietary software that need harmonization for efficient functioning within a mixed-brand environment. Keeping software updated and ensuring cross-compatibility through third-party tools or patches can help mitigate risks associated with software conflicts.


Lastly, aesthetics and user experience should not be overlooked when creating a cohesive setup with mixed brand components. Consistent design language across devices can enhance usability and provide an intuitive user experience. Moreover, considering ergonomic aspects such as interface layouts or control mechanisms ensures that users interact effortlessly with their systems regardless of component origins.


In conclusion, while mixing brands offers flexibility in customization and potentially superior performance outcomes by leveraging diverse strengths across products, it requires careful planning and consideration of key factors like compatibility, quality consistency, warranty policies, software interoperability as well as cohesive user experience design principles. By meticulously evaluating these aspects before embarking on such endeavors ensures that users achieve their desired outcome-a seamless integration resulting in uniform performance despite varied component origins.

Understanding Financing Options for Mobile Home HVAC

Explanation of common financing packages available

In today's rapidly evolving technological landscape, maintaining uniform performance while using mixed brand components is a challenge that many IT professionals and enthusiasts face. Whether it's building a custom PC or managing an enterprise-level data center, ensuring compatibility and efficiency across different components is crucial for achieving optimal performance. To navigate this complex terrain, adhering to best practices is essential.


The first step in ensuring compatibility is understanding the specifications and requirements of each component. This involves conducting thorough research on the hardware specifications, such as voltage requirements, form factors, and connection interfaces. For instance, when integrating a new graphics card from one brand with a motherboard from another, it's vital to verify that both components support the same PCIe version. Mismatched versions can lead to reduced data transfer rates or even incompatibility issues.


Another critical factor is firmware and driver updates. Manufacturers often release updates to improve compatibility with other hardware or to fix bugs that may arise during use. Keeping all components updated ensures they can work together seamlessly without encountering unforeseen glitches that could hinder performance.


Furthermore, power supply considerations cannot be overlooked. Different brands may have varying power demands; thus, ensuring your power supply unit (PSU) can accommodate these needs is paramount. Opting for a PSU with modular cables and sufficient wattage can prevent potential bottlenecks and provide stable power delivery across all components.


Testing plays a pivotal role in maintaining uniform performance when dealing with mixed brand components. Before fully deploying any setup, conducting comprehensive benchmark tests helps identify any weaknesses or incompatibilities within the system. Tools like stress testing software can simulate heavy usage scenarios to pinpoint areas where performance may degrade or fail altogether.


Additionally, fostering open communication between component manufacturers and users can greatly aid in resolving compatibility issues swiftly. Engaging with online forums or support communities can provide valuable insights from others who have faced similar challenges.


Lastly, documentation is an often-overlooked but vital aspect of managing mixed brand environments efficiently. Keeping detailed records of component specifications, firmware versions, and configuration settings allows for easier troubleshooting if issues arise later on.


In conclusion, maintaining uniform performance with mixed brand components requires diligence in research, regular updates, careful planning of power requirements, rigorous testing procedures, active community engagement, and meticulous documentation practices. By adopting these best practices, one can ensure not only compatibility but also sustained efficiency across diverse hardware ecosystems-ultimately leading to a smoother user experience and prolonged lifespan of technology investments.

Key factors to consider when choosing a financing option

Maintaining uniform performance in systems that utilize mixed brand components is a challenge akin to conducting an orchestra with musicians from different backgrounds. Each component has its own specifications, tolerances, and behavior under various conditions. To ensure harmony among these disparate parts, regular maintenance and inspection become imperative.


Firstly, understanding the manufacturer's guidelines for each component is crucial. These guidelines offer insights into optimal operating conditions and maintenance schedules. It's essential to keep these manuals handy as they provide valuable information on compatibility issues and specific care instructions necessary for maintaining peak performance.


One of the primary steps in regular maintenance is ensuring all components are clean and free from debris. Dust and dirt can compromise the efficiency of any system, leading to overheating or mechanical failure. Therefore, periodic cleaning should be part of your routine. Use appropriate tools like soft brushes or compressed air cans to remove dust without damaging sensitive parts.


Lubrication plays a critical role in maintaining mechanical components. Different brands may recommend specific lubricants; hence, it's vital to adhere to these suggestions to prevent undue wear and tear. Regularly check moving parts for signs of friction or noise which could indicate inadequate lubrication or impending failure.


Electrical connections should also be inspected frequently. Loose connections can lead to erratic performance or even damage other components within the system due to voltage fluctuation. Tightening screws and checking for corrosion can help maintain electrical integrity.


Calibration of sensors and meters is another essential aspect of maintenance when dealing with mixed brand systems. Discrepancies in readings can lead to improper adjustments that affect overall system performance. Regularly scheduled calibration ensures accuracy across all devices, allowing them to work in unison effectively.


Firmware updates are often overlooked but are crucial for maintaining compatibility between different branded components. Manufacturers release updates not only for security reasons but also to enhance functionality and interoperability with other products. Keeping firmware up-to-date ensures that all parts communicate efficiently under current protocols.


Moreover, it's important to establish a comprehensive record-keeping system for all maintenance activities performed on the equipment. This documentation aids in tracking patterns over time, identifying recurring issues that might require more intensive investigation or even replacement of certain components.


Training personnel who handle these systems cannot be understated either. They need a thorough understanding of how each brand's component operates within the larger framework so they can identify potential problems early on before they escalate into major failures.


Lastly, consider establishing partnerships with vendors who supply your mixed-brand components; their technical support can prove invaluable when resolving complex interoperability issues swiftly.


In conclusion, regular maintenance coupled with diligent inspections forms the backbone of sustaining uniform performance amidst diverse brand ecosystems-like nurturing an orchestra where every musician knows their role yet adapts seamlessly together under skilled direction ensuring symphonious outcomes time after time.

Personal Loans for HVAC Systems

In the realm of technology and electronics, enthusiasts often find themselves drawn to the allure of mixed brand setups. Whether it's combining a graphics card from one manufacturer with a motherboard from another, or integrating peripherals from various brands into a single system, the potential for enhanced performance and customization is significant. However, these setups can also present unique challenges that require thoughtful troubleshooting to maintain uniform performance across all components.


One of the most common issues encountered in mixed brand configurations is compatibility. Different manufacturers may design their products with varying specifications and standards, which can lead to conflicts when these components are integrated into a single system. For instance, a graphics card might not fully utilize its capabilities if paired with an incompatible motherboard. To mitigate such issues, users should thoroughly research component specifications before purchase and consult compatibility lists provided by manufacturers or enthusiast forums.


Another frequent challenge is the synchronization of software drivers. Each component in a mixed brand setup typically requires its own set of drivers to function optimally. However, these drivers may not always work seamlessly together if they come from different brands. Users must ensure that they are installing the latest driver versions and watch out for updates that might resolve existing conflicts or improve interoperability between components.


Heat management is another critical aspect when dealing with mixed brand systems. Different components may have varying thermal profiles and cooling requirements. A high-performance processor from one brand might generate more heat than the cooling solution designed for another brand's case can handle effectively, leading to throttling or even hardware damage over time. It's essential to invest in adequate cooling solutions that cater to the specific needs of each component within your setup.


Power supply considerations are equally important in ensuring uniform performance across mixed brand components. Each component has its own power consumption characteristics, and mismatched power delivery can lead to instability or poor performance. Users should calculate the total power requirement of their system and choose a power supply unit (PSU) that provides ample headroom beyond this baseline need, taking into account efficiency ratings like 80 PLUS certifications for optimal energy usage.


Network connectivity is yet another area where mixed brand setups might face hurdles. Routers from one manufacturer might not communicate as efficiently with network adapters or smart devices produced by another company due to differences in wireless protocols or firmware implementations. In such cases, updating firmware regularly and exploring third-party firmware options could enhance compatibility and improve overall network performance.


Ultimately, maintaining uniform performance in mixed brand setups demands vigilance and proactive measures from users who must navigate potential pitfalls associated with multiple vendors' technologies coexisting within a single ecosystem. By conducting thorough research on component compatibility prior to assembly; keeping software drivers up-to-date; managing heat dissipation effectively; ensuring sufficient power supply capacity; addressing network connectivity issues; conscientious builders can achieve harmonious operation among diverse hardware elements-unlocking new levels of creativity without sacrificing reliability along this journey toward technological synergy!

A DuPont R-134a refrigerant

A refrigerant is a working fluid used in cooling, heating or reverse cooling and heating of air conditioning systems and heat pumps where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated because of their toxicity and flammability[1] and the contribution of CFC and HCFC refrigerants to ozone depletion[2] and that of HFC refrigerants to climate change.[3]

Refrigerants are used in a direct expansion (DX- Direct Expansion) system (circulating system)to transfer energy from one environment to another, typically from inside a building to outside (or vice versa) commonly known as an air conditioner cooling only or cooling & heating reverse DX system or heat pump a heating only DX cycle. Refrigerants can carry 10 times more energy per kg than water, and 50 times more than air.

Refrigerants are controlled substances and classified by International safety regulations ISO 817/5149, AHRAE 34/15 & BS EN 378 due to high pressures (700–1,000 kPa (100–150 psi)), extreme temperatures (−50 °C [−58 °F] to over 100 °C [212 °F]), flammability (A1 class non-flammable, A2/A2L class flammable and A3 class extremely flammable/explosive) and toxicity (B1-low, B2-medium & B3-high). The regulations relate to situations when these refrigerants are released into the atmosphere in the event of an accidental leak not while circulated.

Refrigerants (controlled substances) must only be handled by qualified/certified engineers for the relevant classes (in the UK, C&G 2079 for A1-class and C&G 6187-2 for A2/A2L & A3-class refrigerants).

Refrigerants (A1 class only) Due to their non-flammability, A1 class non-flammability, non-explosivity, and non-toxicity, non-explosivity they have been used in open systems (consumed when used) like fire extinguishers, inhalers, computer rooms fire extinguishing and insulation, etc.) since 1928.

History

[edit]
The observed stabilization of HCFC concentrations (left graphs) and the growth of HFCs (right graphs) in earth's atmosphere.

The first air conditioners and refrigerators employed toxic or flammable gases, such as ammonia, sulfur dioxide, methyl chloride, or propane, that could result in fatal accidents when they leaked.[4]

In 1928 Thomas Midgley Jr. created the first non-flammable, non-toxic chlorofluorocarbon gas, Freon (R-12). The name is a trademark name owned by DuPont (now Chemours) for any chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or hydrofluorocarbon (HFC) refrigerant. Following the discovery of better synthesis methods, CFCs such as R-11,[5] R-12,[6] R-123[5] and R-502[7] dominated the market.

Phasing out of CFCs

[edit]

In the mid-1970s, scientists discovered that CFCs were causing major damage to the ozone layer that protects the earth from ultraviolet radiation, and to the ozone holes over polar regions.[8][9] This led to the signing of the Montreal Protocol in 1987 which aimed to phase out CFCs and HCFC[10] but did not address the contributions that HFCs made to climate change. The adoption of HCFCs such as R-22,[11][12][13] and R-123[5] was accelerated and so were used in most U.S. homes in air conditioners and in chillers[14] from the 1980s as they have a dramatically lower Ozone Depletion Potential (ODP) than CFCs, but their ODP was still not zero which led to their eventual phase-out.

Hydrofluorocarbons (HFCs) such as R-134a,[15][16] R-407A,[17] R-407C,[18] R-404A,[7] R-410A[19] (a 50/50 blend of R-125/R-32) and R-507[20][21] were promoted as replacements for CFCs and HCFCs in the 1990s and 2000s. HFCs were not ozone-depleting but did have global warming potentials (GWPs) thousands of times greater than CO2 with atmospheric lifetimes that can extend for decades. This in turn, starting from the 2010s, led to the adoption in new equipment of Hydrocarbon and HFO (hydrofluoroolefin) refrigerants R-32,[22] R-290,[23] R-600a,[23] R-454B,[24] R-1234yf,[25][26] R-514A,[27] R-744 (CO2),[28] R-1234ze(E)[29] and R-1233zd(E),[30] which have both an ODP of zero and a lower GWP. Hydrocarbons and CO2 are sometimes called natural refrigerants because they can be found in nature.

The environmental organization Greenpeace provided funding to a former East German refrigerator company to research alternative ozone- and climate-safe refrigerants in 1992. The company developed a hydrocarbon mixture of propane and isobutane, or pure isobutane,[31] called "Greenfreeze", but as a condition of the contract with Greenpeace could not patent the technology, which led to widespread adoption by other firms.[32][33][34] Policy and political influence by corporate executives resisted change however,[35][36] citing the flammability and explosive properties of the refrigerants,[37] and DuPont together with other companies blocked them in the U.S. with the U.S. EPA.[38][39]

Beginning on 14 November 1994, the U.S. Environmental Protection Agency restricted the sale, possession and use of refrigerants to only licensed technicians, per rules under sections 608 and 609 of the Clean Air Act.[40] In 1995, Germany made CFC refrigerators illegal.[41]

In 1996 Eurammon, a European non-profit initiative for natural refrigerants, was established and comprises European companies, institutions, and industry experts.[42][43][44]

In 1997, FCs and HFCs were included in the Kyoto Protocol to the Framework Convention on Climate Change.

In 2000 in the UK, the Ozone Regulations[45] came into force which banned the use of ozone-depleting HCFC refrigerants such as R22 in new systems. The Regulation banned the use of R22 as a "top-up" fluid for maintenance from 2010 for virgin fluid and from 2015 for recycled fluid.[citation needed]

Addressing greenhouse gases

[edit]

With growing interest in natural refrigerants as alternatives to synthetic refrigerants such as CFCs, HCFCs and HFCs, in 2004, Greenpeace worked with multinational corporations like Coca-Cola and Unilever, and later Pepsico and others, to create a corporate coalition called Refrigerants Naturally!.[41][46] Four years later, Ben & Jerry's of Unilever and General Electric began to take steps to support production and use in the U.S.[47] It is estimated that almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.[48]

In 2006, the EU adopted a Regulation on fluorinated greenhouse gases (FCs and HFCs) to encourage to transition to natural refrigerants (such as hydrocarbons). It was reported in 2010 that some refrigerants are being used as recreational drugs, leading to an extremely dangerous phenomenon known as inhalant abuse.[49]

From 2011 the European Union started to phase out refrigerants with a global warming potential (GWP) of more than 150 in automotive air conditioning (GWP = 100-year warming potential of one kilogram of a gas relative to one kilogram of CO2) such as the refrigerant HFC-134a (known as R-134a in North America) which has a GWP of 1526.[50] In the same year the EPA decided in favour of the ozone- and climate-safe refrigerant for U.S. manufacture.[32][51][52]

A 2018 study by the nonprofit organization "Drawdown" put proper refrigerant management and disposal at the very top of the list of climate impact solutions, with an impact equivalent to eliminating over 17 years of US carbon dioxide emissions.[53]

In 2019 it was estimated that CFCs, HCFCs, and HFCs were responsible for about 10% of direct radiative forcing from all long-lived anthropogenic greenhouse gases.[54] and in the same year the UNEP published new voluntary guidelines,[55] however many countries have not yet ratified the Kigali Amendment.

From early 2020 HFCs (including R-404A, R-134a and R-410A) are being superseded: Residential air-conditioning systems and heat pumps are increasingly using R-32. This still has a GWP of more than 600. Progressive devices use refrigerants with almost no climate impact, namely R-290 (propane), R-600a (isobutane) or R-1234yf (less flammable, in cars). In commercial refrigeration also CO2 (R-744) can be used.

Requirements and desirable properties

[edit]

A refrigerant needs to have: a boiling point that is somewhat below the target temperature (although boiling point can be adjusted by adjusting the pressure appropriately), a high heat of vaporization, a moderate density in liquid form, a relatively high density in gaseous form (which can also be adjusted by setting pressure appropriately), and a high critical temperature. Working pressures should ideally be containable by copper tubing, a commonly available material. Extremely high pressures should be avoided.[citation needed]

The ideal refrigerant would be: non-corrosive, non-toxic, non-flammable, with no ozone depletion and global warming potential. It should preferably be natural with well-studied and low environmental impact. Newer refrigerants address the issue of the damage that CFCs caused to the ozone layer and the contribution that HCFCs make to climate change, but some do raise issues relating to toxicity and/or flammability.[56]

Common refrigerants

[edit]

Refrigerants with very low climate impact

[edit]

With increasing regulations, refrigerants with a very low global warming potential are expected to play a dominant role in the 21st century,[57] in particular, R-290 and R-1234yf. Starting from almost no market share in 2018,[58] low GWPO devices are gaining market share in 2022.

Code Chemical Name GWP 20yr[59] GWP 100yr[59] Status Commentary
R-290 C3H8 Propane   3.3[60] Increasing use Low cost, widely available and efficient. They also have zero ozone depletion potential. Despite their flammability, they are increasingly used in domestic refrigerators and heat pumps. In 2010, about one-third of all household refrigerators and freezers manufactured globally used isobutane or an isobutane/propane blend, and this was expected to increase to 75% by 2020.[61]
R-600a HC(CH3)3 Isobutane   3.3 Widely used See R-290.
R-717 NH3 Ammonia 0 0[62] Widely used Commonly used before the popularisation of CFCs, it is again being considered but does suffer from the disadvantage of toxicity, and it requires corrosion-resistant components, which restricts its domestic and small-scale use. Anhydrous ammonia is widely used in industrial refrigeration applications and hockey rinks because of its high energy efficiency and low cost.
R-1234yf HFO-1234yf C3H2F4 2,3,3,3-Tetrafluoropropene   <1   Less performance but also less flammable than R-290.[57] GM announced that it would start using "hydro-fluoro olefin", HFO-1234yf, in all of its brands by 2013.[63]
R-744 CO2 Carbon dioxide 1 1 In use Was used as a refrigerant prior to the discovery of CFCs (this was also the case for propane)[4] and now having a renaissance due to it being non-ozone depleting, non-toxic and non-flammable. It may become the working fluid of choice to replace current HFCs in cars, supermarkets, and heat pumps. Coca-Cola has fielded CO2-based beverage coolers and the U.S. Army is considering CO2 refrigeration.[64][65] Due to the need to operate at pressures of up to 130 bars (1,900 psi; 13,000 kPa), CO2 systems require highly resistant components, however these have already been developed for mass production in many sectors.

Most used

[edit]
Code Chemical Name Global warming potential 20yr[59] GWP 100yr[59] Status Commentary
R-32 HFC-32 CH2F2 Difluoromethane 2430 677 Widely used Promoted as climate-friendly substitute for R-134a and R-410A, but still with high climate impact. Has excellent heat transfer and pressure drop performance, both in condensation and vaporisation.[66] It has an atmospheric lifetime of nearly 5 years.[67] Currently used in residential and commercial air-conditioners and heat pumps.
R-134a HFC-134a CH2FCF3 1,1,1,2-Tetrafluoroethane 3790 1550 Widely used Most used in 2020 for hydronic heat pumps in Europe and the United States in spite of high GWP.[58] Commonly used in automotive air conditioners prior to phase out which began in 2012.
R-410A   50% R-32 / 50% R-125 (pentafluoroethane) Between 2430 (R-32) and 6350 (R-125) > 677 Widely Used Most used in split heat pumps / AC by 2018. Almost 100% share in the USA.[58] Being phased out in the US starting in 2022.[68][69]

Banned / Phased out

[edit]
Code Chemical Name Global warming potential 20yr[59] GWP 100yr[59] Status Commentary
R-11 CFC-11 CCl3F Trichlorofluoromethane 6900 4660 Banned Production was banned in developed countries by Montreal Protocol in 1996
R-12 CFC-12 CCl2F2 Dichlorodifluoromethane 10800 10200 Banned Also known as Freon, a widely used chlorofluorocarbon halomethane (CFC). Production was banned in developed countries by Montreal Protocol in 1996, and in developing countries (article 5 countries) in 2010.[70]
R-22 HCFC-22 CHClF2 Chlorodifluoromethane 5280 1760 Being phased out A widely used hydrochlorofluorocarbon (HCFC) and powerful greenhouse gas with a GWP equal to 1810. Worldwide production of R-22 in 2008 was about 800 Gg per year, up from about 450 Gg per year in 1998. R-438A (MO-99) is a R-22 replacement.[71]
R-123 HCFC-123 CHCl2CF3 2,2-Dichloro-1,1,1-trifluoroethane 292 79 US phase-out Used in large tonnage centrifugal chiller applications. All U.S. production and import of virgin HCFCs will be phased out by 2030, with limited exceptions.[72] R-123 refrigerant was used to retrofit some chiller that used R-11 refrigerant Trichlorofluoromethane. The production of R-11 was banned in developed countries by Montreal Protocol in 1996.[73]

Other

[edit]
Code Chemical Name Global warming potential 20yr[59] GWP 100yr[59] Commentary
R-152a HFC-152a CH3CHF2 1,1-Difluoroethane 506 138 As a compressed air duster
R-407C   Mixture of difluoromethane and pentafluoroethane and 1,1,1,2-tetrafluoroethane     A mixture of R-32, R-125, and R-134a
R-454B   Difluoromethane and 2,3,3,3-Tetrafluoropropene     HFOs blend of refrigerants Difluoromethane (R-32) and 2,3,3,3-Tetrafluoropropene (R-1234yf).[74][75][76][77]
R-513A   An HFO/HFC blend (56% R-1234yf/44%R-134a)     May replace R-134a as an interim alternative[78]
R-514A   HFO-1336mzz-Z/trans-1,2- dichloroethylene (t-DCE)     An hydrofluoroolefin (HFO)-based refrigerant to replace R-123 in low pressure centrifugal chillers for commercial and industrial applications.[79][80]

Refrigerant reclamation and disposal

[edit]

Coolant and refrigerants are found throughout the industrialized world, in homes, offices, and factories, in devices such as refrigerators, air conditioners, central air conditioning systems (HVAC), freezers, and dehumidifiers. When these units are serviced, there is a risk that refrigerant gas will be vented into the atmosphere either accidentally or intentionally, hence the creation of technician training and certification programs in order to ensure that the material is conserved and managed safely. Mistreatment of these gases has been shown to deplete the ozone layer and is suspected to contribute to global warming.[81]

With the exception of isobutane and propane (R600a, R441A and R290), ammonia and CO2 under Section 608 of the United States' Clean Air Act it is illegal to knowingly release any refrigerants into the atmosphere.[82][83]

Refrigerant reclamation is the act of processing used refrigerant gas which has previously been used in some type of refrigeration loop such that it meets specifications for new refrigerant gas. In the United States, the Clean Air Act of 1990 requires that used refrigerant be processed by a certified reclaimer, which must be licensed by the United States Environmental Protection Agency (EPA), and the material must be recovered and delivered to the reclaimer by EPA-certified technicians.[84]

Classification of refrigerants

[edit]
R407C pressure-enthalpy diagram, isotherms between the two saturation lines

Refrigerants may be divided into three classes according to their manner of absorption or extraction of heat from the substances to be refrigerated:[citation needed]

  • Class 1: This class includes refrigerants that cool by phase change (typically boiling), using the refrigerant's latent heat.
  • Class 2: These refrigerants cool by temperature change or 'sensible heat', the quantity of heat being the specific heat capacity x the temperature change. They are air, calcium chloride brine, sodium chloride brine, alcohol, and similar nonfreezing solutions. The purpose of Class 2 refrigerants is to receive a reduction of temperature from Class 1 refrigerants and convey this lower temperature to the area to be cooled.
  • Class 3: This group consists of solutions that contain absorbed vapors of liquefiable agents or refrigerating media. These solutions function by nature of their ability to carry liquefiable vapors, which produce a cooling effect by the absorption of their heat of solution. They can also be classified into many categories.

R numbering system

[edit]

The R- numbering system was developed by DuPont (which owned the Freon trademark), and systematically identifies the molecular structure of refrigerants made with a single halogenated hydrocarbon. ASHRAE has since set guidelines for the numbering system as follows:[85]

R-X1X2X3X4

  • X1 = Number of unsaturated carbon-carbon bonds (omit if zero)
  • X2 = Number of carbon atoms minus 1 (omit if zero)
  • X3 = Number of hydrogen atoms plus 1
  • X4 = Number of fluorine atoms

Series

[edit]
  • R-xx Methane Series
  • R-1xx Ethane Series
  • R-2xx Propane Series
  • R-4xx Zeotropic blend
  • R-5xx Azeotropic blend
  • R-6xx Saturated hydrocarbons (except for propane which is R-290)
  • R-7xx Inorganic Compounds with a molar mass < 100
  • R-7xxx Inorganic Compounds with a molar mass ≥ 100

Ethane Derived Chains

[edit]
  • Number Only Most symmetrical isomer
  • Lower Case Suffix (a, b, c, etc.) indicates increasingly unsymmetrical isomers

Propane Derived Chains

[edit]
  • Number Only If only one isomer exists; otherwise:
  • First lower case suffix (a-f):
    • a Suffix Cl2 central carbon substitution
    • b Suffix Cl, F central carbon substitution
    • c Suffix F2 central carbon substitution
    • d Suffix Cl, H central carbon substitution
    • e Suffix F, H central carbon substitution
    • f Suffix H2 central carbon substitution
  • 2nd Lower Case Suffix (a, b, c, etc.) Indicates increasingly unsymmetrical isomers

Propene derivatives

[edit]
  • First lower case suffix (x, y, z):
    • x Suffix Cl substitution on central atom
    • y Suffix F substitution on central atom
    • z Suffix H substitution on central atom
  • Second lower case suffix (a-f):
    • a Suffix =CCl2 methylene substitution
    • b Suffix =CClF methylene substitution
    • c Suffix =CF2 methylene substitution
    • d Suffix =CHCl methylene substitution
    • e Suffix =CHF methylene substitution
    • f Suffix =CH2 methylene substitution

Blends

[edit]
  • Upper Case Suffix (A, B, C, etc.) Same blend with different compositions of refrigerants

Miscellaneous

[edit]
  • R-Cxxx Cyclic compound
  • R-Exxx Ether group is present
  • R-CExxx Cyclic compound with an ether group
  • R-4xx/5xx + Upper Case Suffix (A, B, C, etc.) Same blend with different composition of refrigerants
  • R-6xx + Lower Case Letter Indicates increasingly unsymmetrical isomers
  • 7xx/7xxx + Upper Case Letter Same molar mass, different compound
  • R-xxxxB# Bromine is present with the number after B indicating how many bromine atoms
  • R-xxxxI# Iodine is present with the number after I indicating how many iodine atoms
  • R-xxx(E) Trans Molecule
  • R-xxx(Z) Cis Molecule

For example, R-134a has 2 carbon atoms, 2 hydrogen atoms, and 4 fluorine atoms, an empirical formula of tetrafluoroethane. The "a" suffix indicates that the isomer is unbalanced by one atom, giving 1,1,1,2-Tetrafluoroethane. R-134 (without the "a" suffix) would have a molecular structure of 1,1,2,2-Tetrafluoroethane.

The same numbers are used with an R- prefix for generic refrigerants, with a "Propellant" prefix (e.g., "Propellant 12") for the same chemical used as a propellant for an aerosol spray, and with trade names for the compounds, such as "Freon 12". Recently, a practice of using abbreviations HFC- for hydrofluorocarbons, CFC- for chlorofluorocarbons, and HCFC- for hydrochlorofluorocarbons has arisen, because of the regulatory differences among these groups.[citation needed]

Refrigerant safety

[edit]

ASHRAE Standard 34, Designation and Safety Classification of Refrigerants, assigns safety classifications to refrigerants based upon toxicity and flammability.

Using safety information provided by producers, ASHRAE assigns a capital letter to indicate toxicity and a number to indicate flammability. The letter "A" is the least toxic and the number 1 is the least flammable.[86]

See also

[edit]
  • Brine (Refrigerant)
  • Section 608
  • List of Refrigerants

References

[edit]
  1. ^ United Nations Environment Programme (UNEP). "Update on New Refrigerants Designations and Safety Classifications" (PDF). ASHRAE. Retrieved 6 October 2024.
  2. ^ "Phaseout of Class II Ozone-Depleting Substances". US Environmental Protection Agency. 22 July 2015. Retrieved October 6, 2024.
  3. ^ "Protecting Our Climate by Reducing Use of HFCs". United States Environmental Protection Agency. 8 February 2021. Retrieved 6 October 2024.
  4. ^ a b Pearson, S. Forbes. "Refrigerants Past, Present and Future" (PDF). R744. Archived from the original (PDF) on 2018-07-13. Retrieved 2021-03-30.
  5. ^ a b c "Finally, a replacement for R123?". Cooling Post. 17 October 2013.
  6. ^ https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/download/3297/1244/
  7. ^ a b Tomczyk, John (1 May 2017). "What's the Latest with R-404A?". achrnews.com.
  8. ^ Molina, Mario J.; Rowland, F. S (28 June 1974). "Stratospheric sink for chlorofluoromethanes: chlorine catalysed destruction of ozone" (PDF). Nature. 249: 810–812. doi:10.1038/249810a0. Retrieved October 6, 2024.
  9. ^ National Research Council (1976). Halocarbons: Effects on Stratospheric Ozone. Washington, DC: The National Academies Press. doi:10.17226/19978. ISBN 978-0-309-02532-4. Retrieved October 6, 2024.
  10. ^ "Air Conditioners, Dehumidifiers, and R-410A Refrigerant". Sylvane. 1 July 2011. Retrieved 27 July 2023.
  11. ^ Protection, United States Congress Senate Committee on Environment and Public Works Subcommittee on Environmental (May 14, 1987). "Clean Air Act Amendments of 1987: Hearings Before the Subcommittee on Environmental Protection of the Committee on Environment and Public Works, United States Senate, One Hundredth Congress, First Session, on S. 300, S. 321, S. 1351, and S. 1384 ..." U.S. Government Printing Office – via Google Books.
  12. ^ Fluorinated Hydrocarbons—Advances in Research and Application (2013 ed.). ScholarlyEditions. June 21, 2013. p. 179. ISBN 9781481675703 – via Google Books.
  13. ^ Whitman, Bill; Johnson, Bill; Tomczyk, John; Silberstein, Eugene (February 25, 2008). Refrigeration and Air Conditioning Technology. Cengage Learning. p. 171. ISBN 978-1111803223 – via Google Books.
  14. ^ "Scroll Chillers: Conversion from HCFC-22 to HFC-410A and HFC-407C" (PDF). Archived from the original (PDF) on 2021-07-20. Retrieved 2021-03-29.
  15. ^ "What's Happening With R-134a? | 2017-06-05 | ACHRNEWS | ACHR News". achrnews.com.
  16. ^ "Conversion R12/R134a" (PDF). Behr Hella Service GmbH. 1 October 2005. Retrieved 27 July 2023.
  17. ^ "R-407A Gains SNAP OK". achrnews.com (Press release). 22 June 2009.
  18. ^ "June 26, 2009: Emerson Approves R-407A, R-407C for Copeland Discus Compressors". achrnews.com.
  19. ^ "Taking New Refrigerants to the Peak". achrnews.com.
  20. ^ Koenig, H. (31 December 1995). "R502/R22 - replacement refrigerant R507 in commercial refrigeration; R502/R22 - Ersatzkaeltemittel R507 in der Gewerbekuehlung. Anwendungstechnik - Kaeltemittel".
  21. ^ Linton, J. W.; Snelson, W. K.; Triebe, A. R.; Hearty, P. F. (31 December 1995). "System performance comparison of R-507 with R-502". OSTI 211821.
  22. ^ "Daikin reveals details of R32 VRV air conditioner". Cooling Post. 6 February 2020.
  23. ^ a b "Refrigerant blends to challenge hydrocarbon efficiencies". Cooling Post. 22 December 2019.
  24. ^ "An HVAC Technician's Guide to R-454B". achrnews.com.
  25. ^ "The truth about new automotive A/C refrigerant R1234YF". 25 July 2018.
  26. ^ Kontomaris, Konstantinos (2014). "HFO-1336mzz-Z: High Temperature Chemical Stability and Use as A Working Fluid in Organic Rankine Cycles". International Refrigeration and Air Conditioning Conference. Paper 1525
  27. ^ "Trane adopts new low GWP refrigerant R514A". Cooling Post. 15 June 2016.
  28. ^ "R404A – the alternatives". Cooling Post. 26 February 2014.
  29. ^ "Carrier expands R1234ze chiller range". Cooling Post. 20 May 2020.
  30. ^ "Carrier confirms an HFO refrigerant future". Cooling Post. 5 June 2019.
  31. ^ "Greenfreeze: A revolution in domestic refrigeration". ecomall.com. Retrieved 2022-07-04.
  32. ^ a b "Happy birthday, Greenfreeze!". Greenpeace. 25 March 2013. Archived from the original on 2020-04-08. Retrieved 8 June 2015.
  33. ^ "Ozone Secretariat". United Nations Environment Programme. Archived from the original on 12 April 2015.
  34. ^ Gunkel, Christoph (13 September 2013). "Öko-Coup aus Ostdeutschland". Der Spiegel (in German). Retrieved 4 September 2015.
  35. ^ Maté, John (2001). "Making a Difference: A Case Study of the Greenpeace Ozone Campaign". Review of European Community & International Environmental Law. 10 (2): 190–198. doi:10.1111/1467-9388.00275.
  36. ^ Benedick, Richard Elliot Ozone Diplomacy Cambridge, MA: Harvard University 1991.
  37. ^ Honeywell International, Inc. (2010-07-09). "Comment on EPA Proposed Rule Office of Air and Radiation Proposed Significant New Alternatives Policy (SNAP) Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances – Hydrocarbon Refrigerants" (PDF).
  38. ^ "Discurso de Frank Guggenheim no lançamento do Greenfreeze | Brasil". Greenpeace.org. Archived from the original on 24 September 2015. Retrieved 10 June 2015.
  39. ^ "Der Greenfreeze - endlich in den USA angekommen". Greenpeace.de (in German). 28 December 2011. Retrieved 10 June 2015.
  40. ^ "Complying With The Section 608 Refrigerant Recycling Rule | Ozone Layer Protection - Regulatory Programs". Epa.gov. 21 April 2015. Retrieved 10 June 2015.
  41. ^ a b "Greenfreeze: a Revolution in Domestic Refrigeration". ecomall.com. Retrieved 8 June 2015.
  42. ^ "Company background". Archived from the original on 2020-02-20. Retrieved 2021-03-15.
  43. ^ Safeguarding the ozone layer and the global climate System: issues related to Hydrofluorocarbons and Perfluorocarbons (Report). IPCC/TEAP. 2005.
  44. ^ Crowley, Thomas J. (2000). "Causes of Climate Change over the Past 1000 Years". Science. 289 (5477): 270–277. Bibcode:2000Sci...289..270C. doi:10.1126/science.289.5477.270. PMID 10894770.
  45. ^ "2010 to 2015 government policy: environmental quality". GOV.UK. 8 May 2015. Retrieved 10 June 2015.
  46. ^ "PepsiCo Brings First Climate-Friendly Vending Machines to the U.S." phx.corporate-ir.net. Retrieved 8 June 2015.
  47. ^ "Climate-Friendly Greenfreezers Come to the United States". WNBC. 2 October 2008. Retrieved 8 June 2015.
  48. ^ Data, Reports and (7 August 2020). "Natural Refrigerants Market To Reach USD 2.88 Billion By 2027 | Reports and Data". GlobeNewswire News Room (Press release). Retrieved 17 December 2020.
  49. ^ Harris, Catharine. "Anti-inhalant Abuse Campaign Targets Building Codes: 'Huffing’ of Air Conditioning Refrigerant a Dangerous Risk." The Nation's Health. American Public Health Association, 2010. Web. 5 December 2010. https://www.thenationshealth.org/content/39/4/20
  50. ^ IPCC AR6 WG1 Ch7 2021
  51. ^ "GreenFreeze". Greenpeace.
  52. ^ "Significant New Alternatives Program: Substitutes in Household Refrigerators and Freezers". Epa.gov. 13 November 2014. Retrieved 4 June 2018.
  53. ^ Berwald, Juli (29 April 2019). "One overlooked way to fight climate change? Dispose of old CFCs". National Geographic - Environment. Archived from the original on April 29, 2019. Retrieved 30 April 2019.
  54. ^ Butler J. and Montzka S. (2020). "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA Global Monitoring Laboratory/Earth System Research Laboratories.
  55. ^ Environment, U. N. (31 October 2019). "New guidelines for air conditioners and refrigerators set to tackle climate change". UN Environment. Retrieved 30 March 2020.
  56. ^ Rosenthal, Elisabeth; Lehren, Andrew (20 June 2011). "Relief in Every Window, but Global Worry Too". The New York Times. Retrieved 21 June 2012.
  57. ^ a b Yadav et al 2022
  58. ^ a b c BSRIA 2020
  59. ^ a b c d e f g h IPCC AR5 WG1 Ch8 2013, pp. 714, 731–737
  60. ^ "European Commission on retrofit refrigerants for stationary applications" (PDF). Archived from the original on August 5, 2009. Retrieved 2010-10-29.cite web: CS1 maint: unfit URL (link)
  61. ^ "Protection of Stratospheric Ozone: Hydrocarbon Refrigerants" (PDF). Environment Protection Agency. Retrieved 5 August 2018.
  62. ^ ARB 2022
  63. ^ GM to Introduce HFO-1234yf AC Refrigerant in 2013 US Models
  64. ^ "The Coca-Cola Company Announces Adoption of HFC-Free Insulation in Refrigeration Units to Combat Global Warming". The Coca-Cola Company. 5 June 2006. Archived from the original on 1 November 2013. Retrieved 11 October 2007.
  65. ^ "Modine reinforces its CO2 research efforts". R744.com. 28 June 2007. Archived from the original on 10 February 2008.
  66. ^ Longo, Giovanni A.; Mancin, Simone; Righetti, Giulia; Zilio, Claudio (2015). "HFC32 vaporisation inside a Brazed Plate Heat Exchanger (BPHE): Experimental measurements and IR thermography analysis". International Journal of Refrigeration. 57: 77–86. doi:10.1016/j.ijrefrig.2015.04.017.
  67. ^ May 2010 TEAP XXI/9 Task Force Report
  68. ^ "Protecting Our Climate by Reducing Use of HFCs". US Environmental Protection Agency. 8 February 2021. Retrieved 25 August 2022.
  69. ^ "Background on HFCs and the AIM Act". www.usepa.gov. US EPA. March 2021. Retrieved 27 June 2024.
  70. ^ "1:Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol". Scientific assessment of ozone depletion: 2018 (PDF) (Global Ozone Research and Monitoring Project–Report No. 58 ed.). Geneva, Switzerland: World Meteorological Organization. 2018. p. 1.10. ISBN 978-1-7329317-1-8. Retrieved 22 November 2020.
  71. ^ [1] Chemours M099 as R22 Replacement
  72. ^ [2] Management of HCFC-123 through the Phaseout and Beyond | EPA | Published August 2020 | Retrieved Dec. 18, 2021
  73. ^ [3] Refrigerant R11 (R-11), Freon 11 (Freon R-11) Properties & Replacement
  74. ^ [4] R-454B XL41 refrigerant fact & info sheet
  75. ^ [5] R-454B emerges as a replacement for R-410A | ACHR News (Air Conditioning, Heating, Refrigeration News)
  76. ^ [6] Ccarrier introduces [R-454B] Puron Advance™ as the next generation refrigerant for ducted residential, light commercial products in North America | Indianapolis - 19 December 2018
  77. ^ [7] Johnson Controls selects R-454B as future refrigerant for new HVAC equipment | 27 May 2021
  78. ^ [8] A conversation on refrigerants | ASHRAE Journal, March 2021 | page 30, column 1, paragraph 2
  79. ^ [9] Opteon™ XP30 (R-514A) refrigerant
  80. ^ [10] Trane adopts new low GWP refrigerant R514A | 15 June 2016
  81. ^ "Emissions of Greenhouse Gases in the United States 1998 - Executive Summary". 18 August 2000. Archived from the original on 18 August 2000.
  82. ^ "Frequently Asked Questions on Section 608". Environment Protection Agency. Retrieved 20 December 2013.
  83. ^ "US hydrocarbons". Retrieved 5 August 2018.
  84. ^ "42 U.S. Code § 7671g - National recycling and emission reduction program". LII / Legal Information Institute.
  85. ^ ASHRAE; UNEP (Nov 2022). "Designation and Safety Classification of Refrigerants" (PDF). ASHRAE. Retrieved 1 July 2023.
  86. ^ "Update on New Refrigerants Designations and Safety Classifications" (PDF). American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). April 2020. Archived from the original (PDF) on February 13, 2023. Retrieved October 22, 2022.
 

Sources

[edit]

IPCC reports

[edit]
  • IPCC (2013). Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M.; et al. (eds.). Climate Change 2013: The Physical Science Basis (PDF). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. ISBN 978-1-107-05799-9. (pb: 978-1-107-66182-0). Fifth Assessment Report - Climate Change 2013
    • Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; et al. (2013). "Chapter 8: Anthropogenic and Natural Radiative Forcing" (PDF). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 659–740.
  • IPCC (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S. L.; et al. (eds.). Climate Change 2021: The Physical Science Basis (PDF). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (In Press).
  • Forster, Piers; Storelvmo, Trude (2021). "Chapter 7: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity" (PDF). IPCC AR6 WG1 2021.

Other

[edit]
  • "High GWP refrigerants". California Air Resources Board. Retrieved 13 February 2022.
  • "BSRIA's view on refrigerant trends in AC and Heat Pump segments". 2020. Retrieved 2022-02-14.
  • Yadav, Saurabh; Liu, Jie; Kim, Sung Chul (2022). "A comprehensive study on 21st-century refrigerants - R290 and R1234yf: A review". International Journal of Heat and Mass Transfer. 122: 121947. Bibcode:2022IJHMT.18221947Y. doi:10.1016/j.ijheatmasstransfer.2021.121947. S2CID 240534198.
[edit]
  • US Environmental Protection Agency page on the GWPs of various substances
  • Green Cooling Initiative on alternative natural refrigerants cooling technologies
  • International Institute of Refrigeration Archived 2018-09-25 at the Wayback Machine

 

 

An air filter being cleaned

Indoor air quality (IAQ) is the air quality within buildings and structures. Poor indoor air quality due to indoor air pollution is known to affect the health, comfort, and well-being of building occupants. It has also been linked to sick building syndrome, respiratory issues, reduced productivity, and impaired learning in schools. Common pollutants of indoor air include: secondhand tobacco smoke, air pollutants from indoor combustion, radon, molds and other allergens, carbon monoxide, volatile organic compounds, legionella and other bacteria, asbestos fibers, carbon dioxide,[1] ozone and particulates.

Source control, filtration, and the use of ventilation to dilute contaminants are the primary methods for improving indoor air quality. Although ventilation is an integral component of maintaining good indoor air quality, it may not be satisfactory alone.[2] In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary.[3]

IAQ is evaluated through collection of air samples, monitoring human exposure to pollutants, analysis of building surfaces, and computer modeling of air flow inside buildings. IAQ is part of indoor environmental quality (IEQ), along with other factors that exert an influence on physical and psychological aspects of life indoors (e.g., lighting, visual quality, acoustics, and thermal comfort).[4]

Indoor air pollution is a major health hazard in developing countries and is commonly referred to as "household air pollution" in that context.[5] It is mostly relating to cooking and heating methods by burning biomass fuel, in the form of wood, charcoal, dung, and crop residue, in indoor environments that lack proper ventilation. Millions of people, primarily women and children, face serious health risks. In total, about three billion people in developing countries are affected by this problem. The World Health Organization (WHO) estimates that cooking-related indoor air pollution causes 3.8 million annual deaths.[6] The Global Burden of Disease study estimated the number of deaths in 2017 at 1.6 million.[7]

Definition

[edit]

For health reasons it is crucial to breathe clean air, free from chemicals and toxicants as much as possible. It is estimated that humans spend approximately 90% of their lifetime indoors[8] and that indoor air pollution in some places can be much worse than that of the ambient air.[9][10]

Various factors contribute to high concentrations of pollutants indoors, ranging from influx of pollutants from external sources, off-gassing by furniture, furnishings including carpets, indoor activities (cooking, cleaning, painting, smoking, etc. in homes to using office equipment in offices), thermal comfort parameters such as temperature, humidity, airflow and physio-chemical properties of the indoor air.[citation needed] Air pollutants can enter a building in many ways, including through open doors or windows. Poorly maintained air conditioners/ventilation systems can harbor mold, bacteria, and other contaminants, which are then circulated throughout indoor spaces, contributing to respiratory problems and allergies.

There have been many debates among indoor air quality specialists about the proper definition of indoor air quality and specifically what constitutes "acceptable" indoor air quality.

Health effects

[edit]
Share of deaths from indoor air pollution. Darker colors mean higher numbers.

IAQ is significant for human health as humans spend a large proportion of their time in indoor environments. Americans and Europeans on average spend approximately 90% of their time indoors.[11][12]

The World Health Organization (WHO) estimates that 3.2 million people die prematurely every year from illnesses attributed to indoor air pollution caused by indoor cooking, with over 237 thousand of these being children under 5. These include around an eighth of all global ischaemic heart disease, stroke, and lung cancer deaths. Overall the WHO estimated that poor indoor air quality resulted in the loss of 86 million healthy life years in 2019.[13]

Studies in the UK and Europe show exposure to indoor air pollutants, chemicals and biological contamination can irritate the upper airway system, trigger or exacerbate asthma and other respiratory or cardiovascular conditions, and may even have carcinogenic effects.[14][15][16][17][18][19]

Poor indoor air quality can cause sick building syndrome. Symptoms include burning of the eyes, scratchy throat, blocked nose, and headaches.[20]

Common pollutants

[edit]

Generated by indoor combustion

[edit]
a 3-stone stove
A traditional wood-fired 3-stone stove in Guatemala, which causes indoor air pollution

Indoor combustion, such as for cooking or heating, is a major cause of indoor air pollution and causes significant health harms and premature deaths. Hydrocarbon fires cause air pollution. Pollution is caused by both biomass and fossil fuels of various types, but some forms of fuels are more harmful than others.

Indoor fire can produce black carbon particles, nitrogen oxides, sulfur oxides, and mercury compounds, among other emissions.[21] Around 3 billion people cook over open fires or on rudimentary cook stoves. Cooking fuels are coal, wood, animal dung, and crop residues.[22] IAQ is a particular concern in low and middle-income countries where such practices are common.[23]

Cooking using natural gas (also called fossil gas, methane gas or simply gas) is associated with poorer indoor air quality. Combustion of gas produces nitrogen dioxide and carbon monixide, and can lead to increased concentrations of nitrogen dioxide throughout the home environment which is linked to respiratory issues and diseases.[24][25]

Carbon monoxide

[edit]

One of the most acutely toxic indoor air contaminants is carbon monoxide (CO), a colourless and odourless gas that is a by-product of incomplete combustion. Carbon monoxide may be emitted from tobacco smoke and generated from malfunctioning fuel burning stoves (wood, kerosene, natural gas, propane) and fuel burning heating systems (wood, oil, natural gas) and from blocked flues connected to these appliances.[26] In developed countries the main sources of indoor CO emission come from cooking and heating devices that burn fossil fuels and are faulty, incorrectly installed or poorly maintained.[27] Appliance malfunction may be due to faulty installation or lack of maintenance and proper use.[26] In low- and middle-income countries the most common sources of CO in homes are burning biomass fuels and cigarette smoke.[27]

Health effects of CO poisoning may be acute or chronic and can occur unintentionally or intentionally (self-harm). By depriving the brain of oxygen, acute exposure to carbon monoxide may have effects on the neurological system (headache, nausea, dizziness, alteration in consciousness and subjective weakness), the cardiovascular and respiratory systems (myocardial infarction, shortness of breath, or rapid breathing, respiratory failure). Acute exposure can also lead to long-term neurological effects such as cognitive and behavioural changes. Severe CO poisoning may lead to unconsciousness, coma and death. Chronic exposure to low concentrations of carbon monoxide may lead to lethargy, headaches, nausea, flu-like symptoms and neuropsychological and cardiovascular issues.[28][26]

The WHO recommended levels of indoor CO exposure in 24 hours is 4 mg/m3.[29] Acute exposure should not exceed 10 mg/m3 in 8 hours, 35 mg/m3 in one hour and 100 mg/m3 in 15 minutes.[27]

Secondhand tobacco smoke

[edit]

Secondhand smoke is tobacco smoke which affects people other than the 'active' smoker. It is made up of the exhaled smoke (15%) and mostly of smoke coming from the burning end of the cigarette, known as sidestream smoke (85%).[30]

Secondhand smoke contains more than 7000 chemicals, of which hundreds are harmful to health.[30] Secondhand tobacco smoke includes both a gaseous and a particulate materials which, with particular hazards arising from levels of carbon monoxide and very small particulates (fine particulate matter, especially PM2.5 and PM10) which get into the bronchioles and alveoles in the lung.[31] Inhaling secondhand smoke on multiple occasions can cause asthma, pneumonia, lung cancer, and sudden infant death syndrome, among other conditions.[32]

Thirdhand smoke (THS) refers to chemicals that settle on objects and bodies indoors after smoking. Exposure to thirdhand smoke can happen even after the actual cigarette smoke is not present anymore and affect those entering the indoor environment much later. Toxic substances of THS can react with other chemicals in the air and produce new toxic chemicals that are otherwise not present in cigarettes.[33]

The only certain method to improve indoor air quality as regards secondhand smoke is to eliminate smoking indoors.[34] Indoor e-cigarette use also increases home particulate matter concentrations.[35]

Particulates

[edit]

Atmospheric particulate matter, also known as particulates, can be found indoors and can affect the health of occupants. Indoor particulate matter can come from different indoor sources or be created as secondary aerosols through indoor gas-to-particle reactions. They can also be outdoor particles that enter indoors. These indoor particles vary widely in size, ranging from nanomet (nanoparticles/ultrafine particles emitted from combustion sources) to micromet (resuspensed dust).[36] Particulate matter can also be produced through cooking activities. Frying produces higher concentrations than boiling or grilling and cooking meat produces higher concentrations than cooking vegetables.[37] Preparing a Thanksgiving dinner can produce very high concentrations of particulate matter, exceeding 300 μg/m3.[38]

Particulates can penetrate deep into the lungs and brain from blood streams, causing health problems such as heart disease, lung disease, cancer and preterm birth.[39]

Generated from building materials, furnishing and consumer products

[edit]

Volatile organic compounds

[edit]

Volatile organic compounds (VOCs) include a variety of chemicals, some of which may have short- and long-term adverse health effects. There are numerous sources of VOCs indoors, which means that their concentrations are consistently higher indoors (up to ten times higher) than outdoors.[40] Some VOCs are emitted directly indoors, and some are formed through the subsequent chemical reactions that can occur in the gas-phase, or on surfaces.[41][42] VOCs presenting health hazards include benzene, formaldehyde, tetrachloroethylene and trichloroethylene.[43]

VOCs are emitted by thousands of indoor products. Examples include: paints, varnishes, waxes and lacquers, paint strippers, cleaning and personal care products, pesticides, building materials and furnishings, office equipment such as copiers and printers, correction fluids and carbonless copy paper, graphics and craft materials including glues and adhesives, permanent markers, and photographic solutions.[44] Chlorinated drinking water releases chloroform when hot water is used in the home. Benzene is emitted from fuel stored in attached garages.

Human activities such as cooking and cleaning can also emit VOCs.[45][46] Cooking can release long-chain aldehydes and alkanes when oil is heated and terpenes can be released when spices are prepared and/or cooked.[45] Leaks of natural gas from cooking appliances have been linked to elevated levels of VOCs including benzene in homes in the USA.[47] Cleaning products contain a range of VOCs, including monoterpenes, sesquiterpenes, alcohols and esters. Once released into the air, VOCs can undergo reactions with ozone and hydroxyl radicals to produce other VOCs, such as formaldehyde.[46]

Health effects include eye, nose, and throat irritation; headaches, loss of coordination, nausea; and damage to the liver, kidney, and central nervous system.[48]

Testing emissions from building materials used indoors has become increasingly common for floor coverings, paints, and many other important indoor building materials and finishes.[49] Indoor materials such as gypsum boards or carpet act as VOC 'sinks', by trapping VOC vapors for extended periods of time, and releasing them by outgassing. The VOCs can also undergo transformation at the surface through interaction with ozone.[42] In both cases, these delayed emissions can result in chronic and low-level exposures to VOCs.[50]

Several initiatives aim to reduce indoor air contamination by limiting VOC emissions from products. There are regulations in France and in Germany, and numerous voluntary ecolabels and rating systems containing low VOC emissions criteria such as EMICODE,[51] M1,[52] Blue Angel[53] and Indoor Air Comfort[54] in Europe, as well as California Standard CDPH Section 01350[55] and several others in the US. Due to these initiatives an increasing number of low-emitting products became available to purchase.

At least 18 microbial VOCs (MVOCs) have been characterised[56][57] including 1-octen-3-ol (mushroom alcohol), 3-Methylfuran, 2-pentanol, 2-hexanone, 2-heptanone, 3-octanone, 3-octanol, 2-octen-1-ol, 1-octene, 2-pentanone, 2-nonanone, borneol, geosmin, 1-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, and thujopsene. The last four are products of Stachybotrys chartarum, which has been linked with sick building syndrome.[56]

Asbestos fibers

[edit]

Many common building materials used before 1975 contain asbestos, such as some floor tiles, ceiling tiles, shingles, fireproofing, heating systems, pipe wrap, taping muds, mastics, and other insulation materials. Normally, significant releases of asbestos fiber do not occur unless the building materials are disturbed, such as by cutting, sanding, drilling, or building remodelling. Removal of asbestos-containing materials is not always optimal because the fibers can be spread into the air during the removal process. A management program for intact asbestos-containing materials is often recommended instead.

When asbestos-containing material is damaged or disintegrates, microscopic fibers are dispersed into the air. Inhalation of asbestos fibers over long exposure times is associated with increased incidence of lung cancer, mesothelioma, and asbestosis. The risk of lung cancer from inhaling asbestos fibers is significantly greater for smokers. The symptoms of disease do not usually appear until about 20 to 30 years after the first exposure to asbestos.

Although all asbestos is hazardous, products that are friable, e.g. sprayed coatings and insulation, pose a significantly higher hazard as they are more likely to release fibers to the air.[58]

Microplastics

[edit]

Microplastic is a type of airborne particulates and is found to prevail in air.[59][60][61][62] A 2017 study found indoor airborne microfiber concentrations between 1.0 and 60.0 microfibers per cubic meter (33% of which were found to be microplastics).[63] Airborne microplastic dust can be produced during renovation, building, bridge and road reconstruction projects[64] and the use of power tools.[65]

Ozone

[edit]

Indoors ozone (O3) is produced by certain high-voltage electric devices (such as air ionizers), and as a by-product of other types of pollution. It appears in lower concentrations indoors than outdoors, usually at 0.2-0.7 of the outdoor concentration.[66] Typically, most ozone is lost to surface reactions indoors, rather than to reactions in air, due to the large surface to volume ratios found indoors.[67]

Outdoor air used for ventilation may have sufficient ozone to react with common indoor pollutants as well as skin oils and other common indoor air chemicals or surfaces. Particular concern is warranted when using "green" cleaning products based on citrus or terpene extracts, because these chemicals react very quickly with ozone to form toxic and irritating chemicals[46] as well as fine and ultrafine particles.[68] Ventilation with outdoor air containing elevated ozone concentrations may complicate remediation attempts.[69]

The WHO standard for ozone concentration is 60 μg/m3 for long-term exposure and 100 μg/m3 as the maximum average over an 8-hour period.[29] The EPA standard for ozone concentration is 0.07 ppm average over an 8-hour period.[70]

Biological agents

[edit]

Mold and other allergens

[edit]

Occupants in buildings can be exposed to fungal spores, cell fragments, or mycotoxins which can arise from a host of means, but there are two common classes: (a) excess moisture induced growth of mold colonies and (b) natural substances released into the air such as animal dander and plant pollen.[71]

While mold growth is associated with high moisture levels,[72] it is likely to grow when a combination of favorable conditions arises. As well as high moisture levels, these conditions include suitable temperatures, pH and nutrient sources.[73] Mold grows primarily on surfaces, and it reproduces by releasing spores, which can travel and settle in different locations. When these spores experience appropriate conditions, they can germinate and lead to mycelium growth.[74] Different mold species favor different environmental conditions to germinate and grow, some being more hydrophilic (growing at higher levels of relative humidity) and other more xerophilic (growing at levels of relative humidity as low as 75–80%).[74][75]

Mold growth can be inhibited by keeping surfaces at conditions that are further from condensation, with relative humidity levels below 75%. This usually translates to a relative humidity of indoor air below 60%, in agreement with the guidelines for thermal comfort that recommend a relative humidity between 40 and 60 %. Moisture buildup in buildings may arise from water penetrating areas of the building envelope or fabric, from plumbing leaks, rainwater or groundwater penetration, or from condensation due to improper ventilation, insufficient heating or poor thermal quality of the building envelope.[76] Even something as simple as drying clothes indoors on radiators can increase the risk of mold growth, if the humidity produced is not able to escape the building via ventilation.[77]

Mold predominantly affects the airways and lungs. Known effects of mold on health include asthma development and exacerbation,[78] with children and elderly at greater risk of more severe health impacts.[79] Infants in homes with mold have a much greater risk of developing asthma and allergic rhinitis.[80][71] More than half of adult workers in moldy or humid buildings suffer from nasal or sinus symptoms due to mold exposure.[71] Some varieties of mold contain toxic compounds (mycotoxins). However, exposure to hazardous levels of mycotoxin via inhalation is not possible in most cases, as toxins are produced by the fungal body and are not at significant levels in the released spores.

Legionella

[edit]

Legionnaires' disease is caused by a waterborne bacterium Legionella that grows best in slow-moving or still, warm water. The primary route of exposure is through the creation of an aerosol effect, most commonly from evaporative cooling towers or showerheads. A common source of Legionella in commercial buildings is from poorly placed or maintained evaporative cooling towers, which often release water in an aerosol which may enter nearby ventilation intakes. Outbreaks in medical facilities and nursing homes, where patients are immuno-suppressed and immuno-weak, are the most commonly reported cases of Legionellosis. More than one case has involved outdoor fountains at public attractions. The presence of Legionella in commercial building water supplies is highly under-reported, as healthy people require heavy exposure to acquire infection.

Legionella testing typically involves collecting water samples and surface swabs from evaporative cooling basins, shower heads, faucets/taps, and other locations where warm water collects. The samples are then cultured and colony forming units (cfu) of Legionella are quantified as cfu/liter.

Legionella is a parasite of protozoans such as amoeba, and thus requires conditions suitable for both organisms. The bacterium forms a biofilm which is resistant to chemical and antimicrobial treatments, including chlorine. Remediation for Legionella outbreaks in commercial buildings vary, but often include very hot water flushes (160 °F (71 °C)), sterilisation of standing water in evaporative cooling basins, replacement of shower heads, and, in some cases, flushes of heavy metal salts. Preventive measures include adjusting normal hot water levels to allow for 120 °F (49 °C) at the tap, evaluating facility design layout, removing faucet aerators, and periodic testing in suspect areas.

Other bacteria

[edit]
Airborne bacteria

There are many bacteria of health significance found in indoor air and on indoor surfaces. The role of microbes in the indoor environment is increasingly studied using modern gene-based analysis of environmental samples. Currently, efforts are under way to link microbial ecologists and indoor air scientists to forge new methods for analysis and to better interpret the results.[81]

A large fraction of the bacteria found in indoor air and dust are shed from humans. Among the most important bacteria known to occur in indoor air are Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae.[citation needed]

Virus

[edit]
Ninth floor layout of the Metropole Hotel in Hong Kong, showing where an outbreak of the severe acute respiratory syndrome (SARS) occurred

Viruses can also be a concern for indoor air quality. During the 2002–2004 SARS outbreak, virus-laden aerosols were found to have seeped into bathrooms from the bathroom floor drains, exacerbated by the draw of bathroom exhaust fans, resulting in the rapid spread of SARS in Amoy Gardens in Hong Kong.[82][83] Elsewhere in Hong Kong, SARS CoV RNA was found on the carpet and in the air intake vents of the Metropole Hotel, which showed that secondary environmental contamination could generate infectious aerosols and resulted in superspreading events.[84]

Carbon dioxide

[edit]

Humans are the main indoor source of carbon dioxide (CO2) in most buildings. Indoor CO2 levels are an indicator of the adequacy of outdoor air ventilation relative to indoor occupant density and metabolic activity.

Indoor CO2 levels above 500 ppm can lead to higher blood pressure and heart rate, and increased peripheral blood circulation.[85] With CO2 concentrations above 1000 ppm cognitive performance might be affected, especially when doing complex tasks, making decision making and problem solving slower but not less accurate.[86][87] However, evidence on the health effects of CO2 at lower concentrations is conflicting and it is difficult to link CO2 to health impacts at exposures below 5000 ppm – reported health outcomes may be due to the presence of human bioeffluents, and other indoor air pollutants related to inadequate ventilation.[88]

Indoor carbon dioxide concentrations can be used to evaluate the quality of a room or a building's ventilation.[89] To eliminate most complaints caused by CO2, the total indoor CO2 level should be reduced to a difference of no greater than 700 ppm above outdoor levels.[90] The National Institute for Occupational Safety and Health (NIOSH) considers that indoor air concentrations of carbon dioxide that exceed 1000 ppm are a marker suggesting inadequate ventilation.[91] The UK standards for schools say that carbon dioxide levels of 800 ppm or lower indicate that the room is well-ventilated.[92] Regulations and standards from around the world show that CO2 levels below 1000 ppm represent good IAQ, between 1000 and 1500 ppm represent moderate IAQ and greater than 1500 ppm represent poor IAQ.[88]

Carbon dioxide concentrations in closed or confined rooms can increase to 1,000 ppm within 45 minutes of enclosure. For example, in a 3.5-by-4-metre (11 ft × 13 ft) sized office, atmospheric carbon dioxide increased from 500 ppm to over 1,000 ppm within 45 minutes of ventilation cessation and closure of windows and doors.[93]

Radon

[edit]

Radon is an invisible, radioactive atomic gas that results from the radioactive decay of radium, which may be found in rock formations beneath buildings or in certain building materials themselves.

Radon is probably the most pervasive serious hazard for indoor air in the United States and Europe. It is a major cause of lung cancer, responsible for 3–14% of cases in countries, leading to tens of thousands of deaths.[94]

Radon gas enters buildings as a soil gas. As it is a heavy gas it will tend to accumulate at the lowest level. Radon may also be introduced into a building through drinking water particularly from bathroom showers. Building materials can be a rare source of radon, but little testing is carried out for stone, rock or tile products brought into building sites; radon accumulation is greatest for well insulated homes.[95] There are simple do-it-yourself kits for radon gas testing, but a licensed professional can also check homes.

The half-life for radon is 3.8 days, indicating that once the source is removed, the hazard will be greatly reduced within a few weeks. Radon mitigation methods include sealing concrete slab floors, basement foundations, water drainage systems, or by increasing ventilation.[96] They are usually cost effective and can greatly reduce or even eliminate the contamination and the associated health risks.[citation needed]

Radon is measured in picocuries per liter of air (pCi/L) or becquerel per cubic meter (Bq m-3). Both are measurements of radioactivity. The World Health Organization (WHO) sets the ideal indoor radon levels at 100 Bq/m-3.[97] In the United States, it is recommend to fix homes with radon levels at or above 4 pCi/L. At the same time it is also recommends that people think about fixing their homes for radon levels between 2 pCi/L and 4 pCi/L.[98] In the United Kingdom the ideal is presence of radon indoors is 100 Bq/m-3. Action needs to be taken in homes with 200 Bq/m−3 or more.[99]

Interactive maps of radon affected areas are available for various regions and countries of the world.[100][101][102]

IAQ and climate change

[edit]

Indoor air quality is linked inextricably to outdoor air quality. The Intergovernmental Panel on Climate Change (IPCC) has varying scenarios that predict how the climate will change in the future.[103] Climate change can affect indoor air quality by increasing the level of outdoor air pollutants such as ozone and particulate matter, for example through emissions from wildfires caused by extreme heat and drought.[104][105] Numerous predictions for how indoor air pollutants will change have been made,[106][107][108][109] and models have attempted to predict how the forecasted IPCC scenarios will vary indoor air quality and indoor comfort parameters such as humidity and temperature.[110]

The net-zero challenge requires significant changes in the performance of both new and retrofitted buildings. However, increased energy efficient housing will trap pollutants inside, whether produced indoors or outdoors, and lead to an increase in human exposure.[111][112]

Indoor air quality standards and monitoring

[edit]

Quality guidelines and standards

[edit]

For occupational exposure, there are standards, which cover a wide range of chemicals, and applied to healthy adults who are exposed over time at workplaces (usually industrial environments).These are published by organisations such as Occupational Safety and Health Administration (OSHA), the National Institute for Occupational Safety and Health (NIOSH), the UK Health and Safety Executive (HSE).

There is no consensus globally about indoor air quality standards, or health-based guidelines. However, there are regulations from some individual countries and from health organisations. For example, the World Health Organization (WHO) has published health-based global air quality guidelines for the general population that are applicable both to outdoor and indoor air,[29] as well as the WHO IAQ guidelines for selected compounds,[113] whereas the UK Health Security Agency published IAQ guidelines for selected VOCs.[114] The Scientific and Technical Committee (STC34) of the International Society of Indoor Air Quality and Climate (ISIAQ) created an open database that collects indoor environmental quality guidelines worldwide.[115] The database is focused on indoor air quality (IAQ), but is currently extended to include standards, regulations, and guidelines related to ventilation, comfort, acoustics, and lighting.[116][117]

Real-time monitoring

[edit]

Since indoor air pollutants can adversely affect human health, it is important to have real-time indoor air quality assessment/monitoring system that can help not only in the improvement of indoor air quality but also help in detection of leaks, spills in a work environment and boost energy efficiency of buildings by providing real-time feedback to the heating, ventilation, and air conditioning (HVAC) system(s).[118] Additionally, there have been enough studies that highlight the correlation between poor indoor air quality and loss of performance and productivity of workers in an office setting.[119]  

Combining the Internet of Things (IoT) technology with real-time IAQ monitoring systems has  tremendously gained momentum and popularity as interventions can be done based on the real-time sensor data and thus help in the IAQ improvement.[120]   

Improvement measures

[edit]

Indoor air quality can be addressed, achieved or maintained during the design of new buildings or as mitigating measures in existing buildings. A hierarchy of measures has been proposed by the Institute of Air Quality Management. It emphasises removing pollutant sources, reducing emissions from any remaining sources, disrupting pathways between sources and the people exposed, protecting people from exposure to pollutants, and removing people from areas with poor air quality.[121]

A report assisted by the Institute for Occupational Safety and Health of the German Social Accident Insurance can support in the systematic investigation of individual health problems arising at indoor workplaces, and in the identification of practical solutions.[122]

Source control

[edit]

HVAC design

[edit]

Environmentally sustainable design concepts include aspects of commercial and residential heating, ventilation and air-conditioning (HVAC) technologies. Among several considerations, one of the topics attended to is the issue of indoor air quality throughout the design and construction stages of a building's life.[citation needed]

One technique to reduce energy consumption while maintaining adequate air quality, is demand-controlled ventilation. Instead of setting throughput at a fixed air replacement rate, carbon dioxide sensors are used to control the rate dynamically, based on the emissions of actual building occupants.[citation needed]

One way of quantitatively ensuring the health of indoor air is by the frequency of effective turnover of interior air by replacement with outside air. In the UK, for example, classrooms are required to have 2.5 outdoor air changes per hour. In halls, gym, dining, and physiotherapy spaces, the ventilation should be sufficient to limit carbon dioxide to 1,500 ppm. In the US, ventilation in classrooms is based on the amount of outdoor air per occupant plus the amount of outdoor air per unit of floor area, not air changes per hour. Since carbon dioxide indoors comes from occupants and outdoor air, the adequacy of ventilation per occupant is indicated by the concentration indoors minus the concentration outdoors. The value of 615 ppm above the outdoor concentration indicates approximately 15 cubic feet per minute of outdoor air per adult occupant doing sedentary office work where outdoor air contains over 400 ppm[123] (global average as of 2023). In classrooms, the requirements in the ASHRAE standard 62.1, Ventilation for Acceptable Indoor Air Quality, would typically result in about 3 air changes per hour, depending on the occupant density. As the occupants are not the only source of pollutants, outdoor air ventilation may need to be higher when unusual or strong sources of pollution exist indoors.

When outdoor air is polluted, bringing in more outdoor air can actually worsen the overall quality of the indoor air and exacerbate some occupant symptoms related to outdoor air pollution. Generally, outdoor country air is better than indoor city air.[citation needed]

The use of air filters can trap some of the air pollutants. Portable room air cleaners with HEPA filters can be used if ventilation is poor or outside air has high level of PM 2.5.[122] Air filters are used to reduce the amount of dust that reaches the wet coils.[citation needed] Dust can serve as food to grow molds on the wet coils and ducts and can reduce the efficiency of the coils.[citation needed]

The use of trickle vents on windows is also valuable to maintain constant ventilation. They can help prevent mold and allergen build up in the home or workplace. They can also reduce the spread of some respiratory infections.[124]

Moisture management and humidity control requires operating HVAC systems as designed. Moisture management and humidity control may conflict with efforts to conserve energy. For example, moisture management and humidity control requires systems to be set to supply make-up air at lower temperatures (design levels), instead of the higher temperatures sometimes used to conserve energy in cooling-dominated climate conditions. However, for most of the US and many parts of Europe and Japan, during the majority of hours of the year, outdoor air temperatures are cool enough that the air does not need further cooling to provide thermal comfort indoors.[citation needed] However, high humidity outdoors creates the need for careful attention to humidity levels indoors. High humidity give rise to mold growth and moisture indoors is associated with a higher prevalence of occupant respiratory problems.[citation needed]

The "dew point temperature" is an absolute measure of the moisture in air. Some facilities are being designed with dew points in the lower 50s °F, and some in the upper and lower 40s °F.[citation needed] Some facilities are being designed using desiccant wheels with gas-fired heaters to dry out the wheel enough to get the required dew points.[citation needed] On those systems, after the moisture is removed from the make-up air, a cooling coil is used to lower the temperature to the desired level.[citation needed]

Commercial buildings, and sometimes residential, are often kept under slightly positive air pressure relative to the outdoors to reduce infiltration. Limiting infiltration helps with moisture management and humidity control.

Dilution of indoor pollutants with outdoor air is effective to the extent that outdoor air is free of harmful pollutants. Ozone in outdoor air occurs indoors at reduced concentrations because ozone is highly reactive with many chemicals found indoors. The products of the reactions between ozone and many common indoor pollutants include organic compounds that may be more odorous, irritating, or toxic than those from which they are formed. These products of ozone chemistry include formaldehyde, higher molecular weight aldehydes, acidic aerosols, and fine and ultrafine particles, among others. The higher the outdoor ventilation rate, the higher the indoor ozone concentration and the more likely the reactions will occur, but even at low levels, the reactions will take place. This suggests that ozone should be removed from ventilation air, especially in areas where outdoor ozone levels are frequently high.

Effect of indoor plants

[edit]
Spider plants (Chlorophytum comosum) absorb some airborne contaminants.

Houseplants together with the medium in which they are grown can reduce components of indoor air pollution, particularly volatile organic compounds (VOC) such as benzene, toluene, and xylene. Plants remove CO2 and release oxygen and water, although the quantitative impact for house plants is small. The interest in using potted plants for removing VOCs was sparked by a 1989 NASA study conducted in sealed chambers designed to replicate the environment on space stations. However, these results suffered from poor replication[125] and are not applicable to typical buildings, where outdoor-to-indoor air exchange already removes VOCs at a rate that could only be matched by the placement of 10–1000 plants/m2 of a building's floor space.[126]

Plants also appear to reduce airborne microbes and molds, and to increase humidity.[127] However, the increased humidity can itself lead to increased levels of mold and even VOCs.[128]

Since extremely high humidity is associated with increased mold growth, allergic responses, and respiratory responses, the presence of additional moisture from houseplants may not be desirable in all indoor settings if watering is done inappropriately.[129]

Institutional programs

[edit]
EPA graphic about asthma triggers

The topic of IAQ has become popular due to the greater awareness of health problems caused by mold and triggers to asthma and allergies.

In the US, the Environmental Protection Agency (EPA) has developed an "IAQ Tools for Schools" program to help improve the indoor environmental conditions in educational institutions. The National Institute for Occupational Safety and Health conducts Health Hazard Evaluations (HHEs) in workplaces at the request of employees, authorized representative of employees, or employers, to determine whether any substance normally found in the place of employment has potentially toxic effects, including indoor air quality.[130]

A variety of scientists work in the field of indoor air quality, including chemists, physicists, mechanical engineers, biologists, bacteriologists, epidemiologists, and computer scientists. Some of these professionals are certified by organizations such as the American Industrial Hygiene Association, the American Indoor Air Quality Council and the Indoor Environmental Air Quality Council.

In the UK, under the Department for Environment Food and Rural Affairs, the Air Quality Expert Group considers current knowledge on indoor air quality and provides advice to government and devolved administration ministers.[131]

At the international level, the International Society of Indoor Air Quality and Climate (ISIAQ), formed in 1991, organizes two major conferences, the Indoor Air and the Healthy Buildings series.[132]

See also

[edit]
  • Environmental management
  • Healthy building
  • Indoor bioaerosol
  • Microbiomes of the built environment
  • Olfactory fatigue

References

[edit]
  1. ^ Carroll, GT; Kirschman, DL; Mammana, A (2022). "Increased CO2 levels in the operating room correlate with the number of healthcare workers present: an imperative for intentional crowd control". Patient Safety in Surgery. 16 (35): 35. doi:10.1186/s13037-022-00343-8. PMC 9672642. PMID 36397098.
  2. ^ ANSI/ASHRAE Standard 62.1, Ventilation for Acceptable Indoor Air Quality, ASHRAE, Inc., Atlanta, GA, US
  3. ^ Belias, Evangelos; Licina, Dusan (2022). "Outdoor PM2. 5 air filtration: optimising indoor air quality and energy". Building & Cities. 3 (1): 186–203. doi:10.5334/bc.153.
  4. ^ KMC Controls (September 24, 2015). "What's Your IQ on IAQ and IEQ?". Archived from the original on April 12, 2021. Retrieved April 12, 2021.[unreliable source?]
  5. ^ Bruce, N; Perez-Padilla, R; Albalak, R (2000). "Indoor air pollution in developing countries: a major environmental and public health challenge". Bulletin of the World Health Organization. 78 (9): 1078–92. PMC 2560841. PMID 11019457.
  6. ^ "Household air pollution and health: fact sheet". WHO. May 8, 2018. Archived from the original on November 12, 2021. Retrieved November 21, 2020.
  7. ^ Ritchie, Hannah; Roser, Max (2019). "Access to Energy". Our World in Data. Archived from the original on November 1, 2021. Retrieved April 1, 2021. According to the Global Burden of Disease study 1.6 million people died prematurely in 2017 as a result of indoor air pollution ... But it's worth noting that the WHO publishes a substantially larger number of indoor air pollution deaths..
  8. ^ Klepeis, Neil E; Nelson, William C; Ott, Wayne R; Robinson, John P; Tsang, Andy M; Switzer, Paul; Behar, Joseph V; Hern, Stephen C; Engelmann, William H (July 2001). "The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants". Journal of Exposure Science & Environmental Epidemiology. 11 (3): 231–252. Bibcode:2001JESEE..11..231K. doi:10.1038/sj.jea.7500165. PMID 11477521. S2CID 22445147. Archived from the original on March 28, 2023. Retrieved March 30, 2024.
  9. ^ U.S. Environmental Protection Agency. Office equipment: design, indoor air emissions, and pollution prevention opportunities. Air and Energy Engineering Research Laboratory, Research Triangle Park, 1995.
  10. ^ U.S. Environmental Protection Agency. Unfinished business: a comparative assessment of environmental problems, EPA-230/2-87-025a-e (NTIS PB88-127030). Office of Policy, Planning and Evaluation, Washington, DC, 1987.
  11. ^ Klepeis, Neil E; Nelson, William C; Ott, Wayne R; Robinson, John P; Tsang, Andy M; Switzer, Paul; Behar, Joseph V; Hern, Stephen C; Engelmann, William H (July 1, 2001). "The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants". Journal of Exposure Science & Environmental Epidemiology. 11 (3): 231–252. Bibcode:2001JESEE..11..231K. doi:10.1038/sj.jea.7500165. ISSN 1559-0631. PMID 11477521. Archived from the original on November 13, 2023. Retrieved November 13, 2023.
  12. ^ "Combined or multiple exposure to health stressors in indoor built environments: an evidence-based review prepared for the WHO training workshop "Multiple environmental exposures and risks": 16–18 October 2013, Bonn, Germany". World Health Organization. Regional Office for Europe. 2014. Archived from the original on November 6, 2023. Retrieved April 10, 2024.
  13. ^ "Household air pollution". World Health Organization. December 15, 2023. Archived from the original on November 12, 2021. Retrieved April 10, 2024.
  14. ^ Clark, Sierra N.; Lam, Holly C. Y.; Goode, Emma-Jane; Marczylo, Emma L.; Exley, Karen S.; Dimitroulopoulou, Sani (August 2, 2023). "The Burden of Respiratory Disease from Formaldehyde, Damp and Mould in English Housing". Environments. 10 (8): 136. doi:10.3390/environments10080136. ISSN 2076-3298.
  15. ^ "Chief Medical Officer (CMO): annual reports". GOV.UK. November 16, 2023. Retrieved May 5, 2024.
  16. ^ "Project information | Indoor air quality at home | Quality standards | NICE". www.nice.org.uk. Retrieved May 5, 2024.
  17. ^ "The inside story: Health effects of indoor air quality on children and young people". RCPCH. Retrieved May 5, 2024.
  18. ^ Halios, Christos H.; Landeg-Cox, Charlotte; Lowther, Scott D.; Middleton, Alice; Marczylo, Tim; Dimitroulopoulou, Sani (September 15, 2022). "Chemicals in European residences – Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs)". Science of the Total Environment. 839: 156201. Bibcode:2022ScTEn.83956201H. doi:10.1016/j.scitotenv.2022.156201. ISSN 0048-9697. PMID 35623519.
  19. ^ "Literature review on chemical pollutants in indoor air in public settings for children and overview of their health effects with a focus on schools, kindergartens and day-care centres". www.who.int. Retrieved May 5, 2024.
  20. ^ Burge, P S (February 2004). "Sick building syndrome". Occupational and Environmental Medicine. 61 (2): 185–190. doi:10.1136/oem.2003.008813. PMC 1740708. PMID 14739390.
  21. ^ Apte, K; Salvi, S (2016). "Household air pollution and its effects on health". F1000Research. 5: 2593. doi:10.12688/f1000research.7552.1. PMC 5089137. PMID 27853506. Burning of natural gas not only produces a variety of gases such as sulfur oxides, mercury compounds, and particulate matter but also leads to the production of nitrogen oxides, primarily nitrogen dioxide...The burning of biomass fuel or any other fossil fuel increases the concentration of black carbon in the air
  22. ^ "Improved Clean Cookstoves". Project Drawdown. February 7, 2020. Archived from the original on December 15, 2021. Retrieved December 5, 2020.
  23. ^ WHO indoor air quality guidelines: household fuel combustion. Geneva: World Health Organization. 2014. ISBN 978-92-4-154888-5.
  24. ^ "Clearing the Air: Gas Cooking and Pollution in European Homes". CLASP. November 8, 2023. Retrieved May 5, 2024.
  25. ^ Seals, Brady; Krasner, Andee. "Gas Stoves: Health and Air Quality Impacts and Solutions". RMI. Retrieved May 5, 2024.
  26. ^ a b c Myers, Isabella (February 2022). The efficient operation of regulation and legislation: An holistic approach to understanding the effect of Carbon Monoxide on mortality (PDF). CO Research Trust.
  27. ^ a b c Penney, David; Benignus, Vernon; Kephalopoulos, Stylianos; Kotzias, Dimitrios; Kleinman, Michael; Verrier, Agnes (2010), "Carbon monoxide", WHO Guidelines for Indoor Air Quality: Selected Pollutants, World Health Organization, ISBN 978-92-890-0213-4, OCLC 696099951, archived from the original on March 8, 2021, retrieved March 18, 2024
  28. ^ "Carbon monoxide: toxicological overview". UK Health Security Agency. May 24, 2022. Retrieved April 17, 2024.
  29. ^ a b c WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide (PDF). World Health Organization. 2021. hdl:10665/345329. ISBN 978-92-4-003422-8.[page needed]
  30. ^ a b Soleimani, Farshid; Dobaradaran, Sina; De-la-Torre, Gabriel E.; Schmidt, Torsten C.; Saeedi, Reza (March 2022). "Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review". Science of the Total Environment. 813: 152667. Bibcode:2022ScTEn.81352667S. doi:10.1016/j.scitotenv.2021.152667. PMID 34963586.
  31. ^ "Considering smoking as an air pollution problem for environmental health | Environmental Performance Index". Archived from the original on September 25, 2018. Retrieved March 21, 2018.
  32. ^ Arfaeinia, Hossein; Ghaemi, Maryam; Jahantigh, Anis; Soleimani, Farshid; Hashemi, Hassan (June 12, 2023). "Secondhand and thirdhand smoke: a review on chemical contents, exposure routes, and protective strategies". Environmental Science and Pollution Research. 30 (32): 78017–78029. Bibcode:2023ESPR...3078017A. doi:10.1007/s11356-023-28128-1. PMC 10258487. PMID 37306877.
  33. ^ Arfaeinia, Hossein; Ghaemi, Maryam; Jahantigh, Anis; Soleimani, Farshid; Hashemi, Hassan (June 12, 2023). "Secondhand and thirdhand smoke: a review on chemical contents, exposure routes, and protective strategies". Environmental Science and Pollution Research. 30 (32): 78017–78029. Bibcode:2023ESPR...3078017A. doi:10.1007/s11356-023-28128-1. ISSN 1614-7499. PMC 10258487. PMID 37306877.
  34. ^ Health, CDC's Office on Smoking and (May 9, 2018). "Smoking and Tobacco Use; Fact Sheet; Secondhand Smoke". Smoking and Tobacco Use. Archived from the original on December 15, 2021. Retrieved January 14, 2019.
  35. ^ Fernández, E; Ballbè, M; Sureda, X; Fu, M; Saltó, E; Martínez-Sánchez, JM (December 2015). "Particulate Matter from Electronic Cigarettes and Conventional Cigarettes: a Systematic Review and Observational Study". Current Environmental Health Reports. 2 (4): 423–9. Bibcode:2015CEHR....2..423F. doi:10.1007/s40572-015-0072-x. PMID 26452675.
  36. ^ Vu, Tuan V.; Harrison, Roy M. (May 8, 2019). "Chemical and Physical Properties of Indoor Aerosols". In Harrison, R. M.; Hester, R. E. (eds.). Indoor Air Pollution. The Royal Society of Chemistry (published 2019). ISBN 978-1-78801-803-6.
  37. ^ Abdullahi, Karimatu L.; Delgado-Saborit, Juana Maria; Harrison, Roy M. (February 13, 2013). "Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review". Atmospheric Environment. 71: 260–294. Bibcode:2013AtmEn..71..260A. doi:10.1016/j.atmosenv.2013.01.061. Archived from the original on May 21, 2023. Retrieved April 11, 2024.
  38. ^ Patel, Sameer; Sankhyan, Sumit; Boedicker, Erin K.; DeCarlo, Peter F.; Farmer, Delphine K.; Goldstein, Allen H.; Katz, Erin F.; Nazaroff, William W; Tian, Yilin; Vanhanen, Joonas; Vance, Marina E. (June 16, 2020). "Indoor Particulate Matter during HOMEChem: Concentrations, Size Distributions, and Exposures". Environmental Science & Technology. 54 (12): 7107–7116. Bibcode:2020EnST...54.7107P. doi:10.1021/acs.est.0c00740. ISSN 0013-936X. PMID 32391692. Archived from the original on April 28, 2023. Retrieved April 11, 2024.
  39. ^ Thangavel, Prakash; Park, Duckshin; Lee, Young-Chul (June 19, 2022). "Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview". International Journal of Environmental Research and Public Health. 19 (12): 7511. doi:10.3390/ijerph19127511. ISSN 1660-4601. PMC 9223652. PMID 35742761.
  40. ^ You, Bo; Zhou, Wei; Li, Junyao; Li, Zhijie; Sun, Yele (November 4, 2022). "A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements". Environment International. 170: 107611. Bibcode:2022EnInt.17007611Y. doi:10.1016/j.envint.2022.107611. PMID 36335895.
  41. ^ Weschler, Charles J.; Carslaw, Nicola (March 6, 2018). "Indoor Chemistry". Environmental Science & Technology. 52 (5): 2419–2428. Bibcode:2018EnST...52.2419W. doi:10.1021/acs.est.7b06387. ISSN 0013-936X. PMID 29402076. Archived from the original on November 15, 2023. Retrieved April 11, 2024.
  42. ^ a b Carter, Toby J.; Poppendieck, Dustin G.; Shaw, David; Carslaw, Nicola (January 16, 2023). "A Modelling Study of Indoor Air Chemistry: The Surface Interactions of Ozone and Hydrogen Peroxide". Atmospheric Environment. 297: 119598. Bibcode:2023AtmEn.29719598C. doi:10.1016/j.atmosenv.2023.119598.
  43. ^ Tsai, Wen-Tien (March 26, 2019). "An overview of health hazards of volatile organic compounds regulated as indoor air pollutants". Reviews on Environmental Health. 34 (1): 81–89. doi:10.1515/reveh-2018-0046. PMID 30854833.
  44. ^ "U.S. EPA IAQ – Organic chemicals". Epa.gov. August 5, 2010. Archived from the original on September 9, 2015. Retrieved March 2, 2012.
  45. ^ a b Davies, Helen L.; O'Leary, Catherine; Dillon, Terry; Shaw, David R.; Shaw, Marvin; Mehra, Archit; Phillips, Gavin; Carslaw, Nicola (August 14, 2023). "A measurement and modelling investigation of the indoor air chemistry following cooking activities". Environmental Science: Processes & Impacts. 25 (9): 1532–1548. doi:10.1039/D3EM00167A. ISSN 2050-7887. PMID 37609942.
  46. ^ a b c Harding-Smith, Ellen; Shaw, David R.; Shaw, Marvin; Dillon, Terry J.; Carslaw, Nicola (January 23, 2024). "Does green mean clean? Volatile organic emissions from regular versus green cleaning products". Environmental Science: Processes & Impacts. 26 (2): 436–450. doi:10.1039/D3EM00439B. ISSN 2050-7887. PMID 38258874.
  47. ^ Lebel, Eric D.; Michanowicz, Drew R.; Bilsback, Kelsey R.; Hill, Lee Ann L.; Goldman, Jackson S. W.; Domen, Jeremy K.; Jaeger, Jessie M.; Ruiz, Angélica; Shonkoff, Seth B. C. (November 15, 2022). "Composition, Emissions, and Air Quality Impacts of Hazardous Air Pollutants in Unburned Natural Gas from Residential Stoves in California". Environmental Science & Technology. 56 (22): 15828–15838. Bibcode:2022EnST...5615828L. doi:10.1021/acs.est.2c02581. ISSN 0013-936X. PMC 9671046. PMID 36263944.
  48. ^ "Volatile Organic Compounds' Impact on Indoor Air Quality". United States Environmental Protection Agency. August 18, 2014. Retrieved May 23, 2024.
  49. ^ "About VOCs". January 21, 2013. Archived from the original on January 21, 2013. Retrieved September 16, 2019.
  50. ^ Oanh, Nguyen Thi Kim; Hung, Yung-Tse (2005). "Indoor Air Pollution Control". Advanced Air and Noise Pollution Control. Handbook of Environmental Engineering. Vol. 2. pp. 237–272. doi:10.1007/978-1-59259-779-6_7. ISBN 978-1-58829-359-6.
  51. ^ "Emicode". Eurofins.com. Archived from the original on September 24, 2015. Retrieved March 2, 2012.
  52. ^ "M1". Eurofins.com. Archived from the original on September 24, 2015. Retrieved March 2, 2012.
  53. ^ "Blue Angel". Eurofins.com. Archived from the original on September 24, 2015. Retrieved March 2, 2012.
  54. ^ "Indoor Air Comfort". Indoor Air Comfort. Archived from the original on February 1, 2011. Retrieved March 2, 2012.
  55. ^ "CDPH Section 01350". Eurofins.com. Archived from the original on September 24, 2015. Retrieved March 2, 2012.
  56. ^ a b "Smelly Moldy Houses". Archived from the original on December 15, 2021. Retrieved August 2, 2014.
  57. ^ Meruva, N. K.; Penn, J. M.; Farthing, D. E. (November 2004). "Rapid identification of microbial VOCs from tobacco molds using closed-loop stripping and gas chromatography/time-of-flight mass spectrometry". J Ind Microbiol Biotechnol. 31 (10): 482–8. doi:10.1007/s10295-004-0175-0. PMID 15517467. S2CID 32543591.
  58. ^ "Atmospheric carbon dioxide passes 400 ppm everywhere". Physics Today (6): 8170. 2016. Bibcode:2016PhT..2016f8170.. doi:10.1063/pt.5.029904.
  59. ^ Xie Y, Li Y, Feng Y, Cheng W, Wang Y (April 2022). "Inhalable microplastics prevails in air: Exploring the size detection limit". Environ Int. 162: 107151. Bibcode:2022EnInt.16207151X. doi:10.1016/j.envint.2022.107151. PMID 35228011.
  60. ^ Liu C, Li J, Zhang Y, Wang L, Deng J, Gao Y, Yu L, Zhang J, Sun H (July 2019). "Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure". Environ Int. 128: 116–124. Bibcode:2019EnInt.128..116L. doi:10.1016/j.envint.2019.04.024. PMID 31039519.
  61. ^ Yuk, Hyeonseong; Jo, Ho Hyeon; Nam, Jihee; Kim, Young Uk; Kim, Sumin (2022). "Microplastic: A particulate matter(PM) generated by deterioration of building materials". Journal of Hazardous Materials. 437. Elsevier BV: 129290. Bibcode:2022JHzM..43729290Y. doi:10.1016/j.jhazmat.2022.129290. ISSN 0304-3894. PMID 35753297.
  62. ^ Eberhard, Tiffany; Casillas, Gaston; Zarus, Gregory M.; Barr, Dana Boyd (January 6, 2024). "Systematic review of microplastics and nanoplastics in indoor and outdoor air: identifying a framework and data needs for quantifying human inhalation exposures" (PDF). Journal of Exposure Science & Environmental Epidemiology. 34 (2). Springer Science and Business Media LLC: 185–196. doi:10.1038/s41370-023-00634-x. ISSN 1559-0631. Retrieved December 19, 2024. MPs have been found in water and soil, and recent research is exposing the vast amount of them in ambient and indoor air.
  63. ^ Gasperi, Johnny; Wright, Stephanie L.; Dris, Rachid; Collard, France; Mandin, Corinne; Guerrouache, Mohamed; Langlois, Valérie; Kelly, Frank J.; Tassin, Bruno (2018). "Microplastics in air: Are we breathing it in?" (PDF). Current Opinion in Environmental Science & Health. 1: 1–5. Bibcode:2018COESH...1....1G. doi:10.1016/j.coesh.2017.10.002. S2CID 133750509. Archived (PDF) from the original on March 6, 2020. Retrieved July 11, 2019.
  64. ^ Prasittisopin, Lapyote; Ferdous, Wahid; Kamchoom, Viroon (2023). "Microplastics in construction and built environment". Developments in the Built Environment. 15. Elsevier BV. doi:10.1016/j.dibe.2023.100188. ISSN 2666-1659.
  65. ^ Galloway, Nanette LoBiondo (September 13, 2024). "Ventnor introduces ordinance to control microplastics contamination". DownBeach. Retrieved October 2, 2024.
  66. ^ Weschler, Charles J. (December 2000). "Ozone in Indoor Environments: Concentration and Chemistry: Ozone in Indoor Environments". Indoor Air. 10 (4): 269–288. doi:10.1034/j.1600-0668.2000.010004269.x. PMID 11089331. Archived from the original on April 15, 2024. Retrieved April 11, 2024.
  67. ^ Weschler, Charles J.; Nazaroff, William W (February 22, 2023). "Human skin oil: a major ozone reactant indoors". Environmental Science: Atmospheres. 3 (4): 640–661. doi:10.1039/D3EA00008G. ISSN 2634-3606. Archived from the original on April 15, 2024. Retrieved April 11, 2024.
  68. ^ Kumar, Prashant; Kalaiarasan, Gopinath; Porter, Alexandra E.; Pinna, Alessandra; KÅ‚osowski, MichaÅ‚ M.; Demokritou, Philip; Chung, Kian Fan; Pain, Christopher; Arvind, D. K.; Arcucci, Rossella; Adcock, Ian M.; Dilliway, Claire (February 20, 2021). "An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments". Science of the Total Environment. 756: 143553. Bibcode:2021ScTEn.75643553K. doi:10.1016/j.scitotenv.2020.143553. hdl:10044/1/84518. PMID 33239200. S2CID 227176222.
  69. ^ Apte, M. G.; Buchanan, I. S. H.; Mendell, M. J. (April 2008). "Outdoor ozone and building-related symptoms in the BASE study". Indoor Air. 18 (2): 156–170. Bibcode:2008InAir..18..156A. doi:10.1111/j.1600-0668.2008.00521.x. PMID 18333994.
  70. ^ "Eight-hour Average Ozone Concentrations | Ground-level Ozone | New England | US EPA". United States Environmental Protection Agency. Archived from the original on December 15, 2021. Retrieved September 16, 2019.
  71. ^ a b c Park, J. H.; Cox-Ganser, J. M. (2011). "Meta-Mold exposure and respiratory health in damp indoor environments". Frontiers in Bioscience. 3 (2): 757–771. doi:10.2741/e284. PMID 21196349.
  72. ^ "CDC – Mold – General Information – Facts About Mold and Dampness". December 4, 2018. Archived from the original on December 16, 2019. Retrieved June 23, 2017.
  73. ^ Singh, Dr Jagjit; Singh, Jagjit, eds. (1994). Building Mycology (1 ed.). Taylor & Francis. doi:10.4324/9780203974735. ISBN 978-1-135-82462-4.
  74. ^ a b Clarke, J.A; Johnstone, C.M; Kelly, N.J; McLean, R.C; anderson, J.A; Rowan, N.J; Smith, J.E (January 20, 1999). "A technique for the prediction of the conditions leading to mould growth in buildings". Building and Environment. 34 (4): 515–521. Bibcode:1999BuEnv..34..515C. doi:10.1016/S0360-1323(98)00023-7. Archived from the original on October 26, 2022. Retrieved April 10, 2024.
  75. ^ Vereecken, Evy; Roels, Staf (November 15, 2011). "Review of mould prediction models and their influence on mould risk evaluation". Building and Environment. 51: 296–310. doi:10.1016/j.buildenv.2011.11.003. Archived from the original on March 2, 2024. Retrieved April 11, 2024.
  76. ^ BS 5250:2021 - Management of moisture in buildings. Code of practice. British Standards Institution (BSI). October 31, 2021. ISBN 978-0-539-18975-9.
  77. ^ Madgwick, Della; Wood, Hannah (August 8, 2016). "The problem of clothes drying in new homes in the UK". Structural Survey. 34 (4/5): 320–330. doi:10.1108/SS-10-2015-0048. ISSN 0263-080X. Archived from the original on May 7, 2021. Retrieved April 11, 2024.
  78. ^ May, Neil; McGilligan, Charles; Ucci, Marcella (2017). "Health and Moisture in Buildings" (PDF). UK Centre for Moisture in Buildings. Archived (PDF) from the original on April 11, 2024. Retrieved April 11, 2024.
  79. ^ "Understanding and addressing the health risks of damp and mould in the home". GOV.UK. September 7, 2023. Archived from the original on April 10, 2024. Retrieved April 11, 2024.
  80. ^ Clark, Sierra N.; Lam, Holly C. Y.; Goode, Emma-Jane; Marczylo, Emma L.; Exley, Karen S.; Dimitroulopoulou, Sani (August 2, 2023). "The Burden of Respiratory Disease from Formaldehyde, Damp and Mould in English Housing". Environments. 10 (8): 136. doi:10.3390/environments10080136. ISSN 2076-3298.
  81. ^ Microbiology of the Indoor Environment Archived July 23, 2011, at the Wayback Machine, microbe.net
  82. ^ http://www.info.gov.hk/info/sars/pdf/amoy_e.pdf
  83. ^ https://www.info.gov.hk/info/sars/graphics/amoyannex.jpg
  84. ^ "Progress in Global Surveillance and Response Capacity 10 Years after Severe Acute Respiratory Syndrome". environmental contamination with SARS CoV RNA was identified on the carpet in front of the index case-patient's room and 3 nearby rooms (and on their door frames but not inside the rooms) and in the air intake vents near the centrally located elevators ... secondary infections occurred not in guest rooms but in the common areas of the ninth floor, such as the corridor or elevator hall. These areas could have been contaminated through body fluids (e.g., vomitus, expectorated sputum), respiratory droplets, or suspended small-particle aerosols generated by the index case-patient; other guests were then infected by fomites or aerosols while passing through these same areas. Efficient spread of SARS CoV through small-particle aerosols was observed in several superspreading events in health care settings, during an airplane flight, and in an apartment complex (12–14,16–19). This process of environmental contamination that generated infectious aerosols likely best explains the pattern of disease transmission at the Hotel Metropole.
  85. ^ Azuma, Kenichi; Kagi, Naoki; Yanagi, U.; Osawa, Haruki (December 2018). "Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance". Environment International. 121 (Pt 1): 51–56. Bibcode:2018EnInt.121...51A. doi:10.1016/j.envint.2018.08.059. PMID 30172928.
  86. ^ Du, Bowen; Tandoc, Michael (June 19, 2020). "Indoor CO2 concentrations and cognitive function: A critical review". International Journal of Indoor Environment and Health. 30 (6): 1067–1082. Bibcode:2020InAir..30.1067D. doi:10.1111/ina.12706. PMID 32557862. S2CID 219915861.
  87. ^ Fan, Yuejie; Cao, Xiaodong; Zhang, Jie; Lai, Dayi; Pang, Liping (June 1, 2023). "Short-term exposure to indoor carbon dioxide and cognitive task performance: A systematic review and meta-analysis". Building and Environment. 237: 110331. Bibcode:2023BuEnv.23710331F. doi:10.1016/j.buildenv.2023.110331.
  88. ^ a b Lowther, Scott D.; Dimitroulopoulou, Sani; Foxall, Kerry; Shrubsole, Clive; Cheek, Emily; Gadeberg, Britta; Sepai, Ovnair (November 16, 2021). "Low Level Carbon Dioxide Indoors—A Pollution Indicator or a Pollutant? A Health-Based Perspective". Environments. 8 (11): 125. doi:10.3390/environments8110125. ISSN 2076-3298.
  89. ^ Persily, Andrew (July 2022). "Development and application of an indoor carbon dioxide metric". Indoor Air. 32 (7): e13059. doi:10.1111/ina.13059. PMID 35904382.
  90. ^ "Indoor Environmental Quality: HVAC Management | NIOSH | CDC". www.cdc.gov. February 25, 2022. Archived from the original on April 1, 2022. Retrieved April 1, 2022.
  91. ^ Indoor Environmental Quality: Building Ventilation Archived January 20, 2022, at the Wayback Machine. National Institute for Occupational Safety and Health. Accessed October 8, 2008.
  92. ^ "SAMHE - Schools' Air quality Monitoring for Health and Education". samhe.org.uk. Archived from the original on March 18, 2024. Retrieved March 18, 2024.
  93. ^ "Document Display | NEPIS | US EPA". nepis.epa.gov. Archived from the original on November 16, 2023. Retrieved October 19, 2023.
  94. ^ Zeeb & Shannoun 2009, p. 3.
  95. ^ C.Michael Hogan and Sjaak Slanina. 2010, Air pollution. Encyclopedia of Earth Archived October 12, 2006, at the Wayback Machine. eds. Sidney Draggan and Cutler Cleveland. National Council for Science and the Environment. Washington DC
  96. ^ "Radon Mitigation Methods". Radon Solution—Raising Radon Awareness. Archived from the original on December 15, 2008. Retrieved December 2, 2008.
  97. ^ Zeeb & Shannoun 2009, p. [page needed].
  98. ^ "Basic radon facts" (PDF). US Environmental Protection Agency. Archived (PDF) from the original on January 13, 2022. Retrieved September 18, 2018. Public Domain This article incorporates text from this source, which is in the public domain.
  99. ^ "Radon Action Level and Target Level". UKradon. Archived from the original on March 18, 2024. Retrieved March 18, 2024.
  100. ^ "Radon Zone Map (with State Information)". U.S. Environmental Protection Agency. Archived from the original on April 1, 2023. Retrieved April 10, 2024.
  101. ^ "UK maps of radon". UKradon. Archived from the original on March 7, 2024. Retrieved April 10, 2024.
  102. ^ "Radon map of Australia". Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Archived from the original on March 20, 2024. Retrieved April 10, 2024.
  103. ^ "Climate Change 2021: The Physical Science Basis". Intergovernmental Panel on Climate Change. Archived (PDF) from the original on May 26, 2023. Retrieved April 15, 2024.
  104. ^ Chen, Guochao; Qiu, Minghao; Wang, Peng; Zhang, Yuqiang; Shindell, Drew; Zhang, Hongliang (July 19, 2024). "Continuous wildfires threaten public and ecosystem health under climate change across continents". Frontiers of Environmental Science & Engineering. 18 (10). doi:10.1007/s11783-024-1890-6. ISSN 2095-2201.
  105. ^ Gherasim, Alina; Lee, Alison G.; Bernstein, Jonathan A. (November 14, 2023). "Impact of Climate Change on Indoor Air Quality". Immunology and Allergy Clinics of North America. 44 (1): 55–73. doi:10.1016/j.iac.2023.09.001. PMID 37973260. Archived from the original on November 15, 2023. Retrieved April 15, 2024.
  106. ^ Lacressonnière, Gwendoline; Watson, Laura; Gauss, Michael; Engardt, Magnuz; Andersson, Camilla; Beekmann, Matthias; Colette, Augustin; Foret, Gilles; Josse, Béatrice; Marécal, Virginie; Nyiri, Agnes; Siour, Guillaume; Sobolowski, Stefan; Vautard, Robert (February 1, 2017). "Particulate matter air pollution in Europe in a +2 °C warming world". Atmospheric Environment. 154: 129–140. Bibcode:2017AtmEn.154..129L. doi:10.1016/j.atmosenv.2017.01.037. Archived from the original on November 17, 2023. Retrieved April 15, 2024.
  107. ^ Lee, J; Lewis, A; Monks, P; Jacob, M; Hamilton, J; Hopkins, J; Watson, N; Saxton, J; Ennis, C; Carpenter, L (September 26, 2006). "Ozone photochemistry and elevated isoprene during the UK heatwave of august 2003". Atmospheric Environment. 40 (39): 7598–7613. Bibcode:2006AtmEn..40.7598L. doi:10.1016/j.atmosenv.2006.06.057. Archived from the original on October 26, 2022. Retrieved April 15, 2024.
  108. ^ Salthammer, Tunga; Schieweck, Alexandra; Gu, Jianwei; Ameri, Shaghayegh; Uhde, Erik (August 7, 2018). "Future trends in ambient air pollution and climate in Germany – Implications for the indoor environment". Building and Environment. 143: 661–670. Bibcode:2018BuEnv.143..661S. doi:10.1016/j.buildenv.2018.07.050.
  109. ^ Zhong, L.; Lee, C.-S.; Haghighat, F. (December 1, 2016). "Indoor ozone and climate change". Sustainable Cities and Society. 28: 466–472. doi:10.1016/j.scs.2016.08.020. Archived from the original on November 28, 2022. Retrieved April 15, 2024.
  110. ^ Zhao, Jiangyue; Uhde, Erik; Salthammer, Tunga; Antretter, Florian; Shaw, David; Carslaw, Nicola; Schieweck, Alexandra (December 9, 2023). "Long-term prediction of the effects of climate change on indoor climate and air quality". Environmental Research. 243: 117804. doi:10.1016/j.envres.2023.117804. PMID 38042519.
  111. ^ Niculita-Hirzel, Hélène (March 16, 2022). "Latest Trends in Pollutant Accumulations at Threatening Levels in Energy-Efficient Residential Buildings with and without Mechanical Ventilation: A Review". International Journal of Environmental Research and Public Health. 19 (6): 3538. doi:10.3390/ijerph19063538. ISSN 1660-4601. PMC 8951331. PMID 35329223.
  112. ^ UK Health Security Agency (2024) [1 September 2012]. "Chapter 5: Impact of climate change policies on indoor environmental quality and health in UK housing". Health Effects of Climate Change (HECC) in the UK: 2023 report (published January 15, 2024).
  113. ^ World Health Organization, ed. (2010). Who guidelines for indoor air quality: selected pollutants. Copenhagen: WHO. ISBN 978-92-890-0213-4. OCLC 696099951.
  114. ^ "Air quality: UK guidelines for volatile organic compounds in indoor spaces". Public Health England. September 13, 2019. Retrieved April 17, 2024.
  115. ^ "Home - IEQ Guidelines". ieqguidelines.org. Retrieved April 17, 2024.
  116. ^ Toyinbo, Oluyemi; Hägerhed, Linda; Dimitroulopoulou, Sani; Dudzinska, Marzenna; Emmerich, Steven; Hemming, David; Park, Ju-Hyeong; Haverinen-Shaughnessy, Ulla; the Scientific Technical Committee 34 of the International Society of Indoor Air Quality, Climate (April 19, 2022). "Open database for international and national indoor environmental quality guidelines". Indoor Air. 32 (4): e13028. doi:10.1111/ina.13028. ISSN 0905-6947. PMC 11099937. PMID 35481936.cite journal: CS1 maint: numeric names: authors list (link)
  117. ^ Dimitroulopoulou, Sani; DudziÅ„ska, Marzenna R.; Gunnarsen, Lars; Hägerhed, Linda; Maula, Henna; Singh, Raja; Toyinbo, Oluyemi; Haverinen-Shaughnessy, Ulla (August 4, 2023). "Indoor air quality guidelines from across the world: An appraisal considering energy saving, health, productivity, and comfort". Environment International. 178: 108127. Bibcode:2023EnInt.17808127D. doi:10.1016/j.envint.2023.108127. PMID 37544267.
  118. ^ Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque (February 2017). "Monitoring Indoor Air Quality for Enhanced Occupational Health". Journal of Medical Systems. 41 (2): 23. doi:10.1007/s10916-016-0667-2. PMID 28000117. S2CID 7372403.
  119. ^ Wyon, D. P. (August 2004). "The effects of indoor air quality on performance and productivity: The effects of IAQ on performance and productivity". Indoor Air. 14: 92–101. doi:10.1111/j.1600-0668.2004.00278.x. PMID 15330777.
  120. ^ Son, Young Joo; Pope, Zachary C.; Pantelic, Jovan (September 2023). "Perceived air quality and satisfaction during implementation of an automated indoor air quality monitoring and control system". Building and Environment. 243: 110713. Bibcode:2023BuEnv.24310713S. doi:10.1016/j.buildenv.2023.110713.
  121. ^ IAQM (2021). Indoor Air Quality Guidance: Assessment, Monitoring, Modelling and Mitigation (PDF) (Version 0.1 ed.). London: Institute of Air Quality Management.
  122. ^ a b Institute for Occupational Safety and Health of the German Social Accident Insurance. "Indoor workplaces – Recommended procedure for the investigation of working environment". Archived from the original on November 3, 2021. Retrieved June 10, 2020.
  123. ^ "Climate Change: Atmospheric Carbon Dioxide | NOAA Climate.gov". www.climate.gov. April 9, 2024. Retrieved May 6, 2024.
  124. ^ "Ventilation to reduce the spread of respiratory infections, including COVID-19". GOV.UK. August 2, 2022. Archived from the original on January 18, 2024. Retrieved April 15, 2024.
  125. ^ Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge; Müller, Renate (December 2014). "Can ornamental potted plants remove volatile organic compounds from indoor air? — a review". Environmental Science and Pollution Research. 21 (24): 13909–13928. Bibcode:2014ESPR...2113909D. doi:10.1007/s11356-014-3240-x. PMID 25056742. S2CID 207272189.
  126. ^ Cummings, Bryan E.; Waring, Michael S. (March 2020). "Potted plants do not improve indoor air quality: a review and analysis of reported VOC removal efficiencies". Journal of Exposure Science & Environmental Epidemiology. 30 (2): 253–261. Bibcode:2020JESEE..30..253C. doi:10.1038/s41370-019-0175-9. PMID 31695112. S2CID 207911697.
  127. ^ Wolverton, B. C.; Wolverton, J. D. (1996). "Interior plants: their influence on airborne microbes inside energy-efficient buildings". Journal of the Mississippi Academy of Sciences. 41 (2): 100–105.
  128. ^ US EPA, OAR (July 16, 2013). "Mold". US EPA. Archived from the original on May 18, 2020. Retrieved September 16, 2019.
  129. ^ Institute of Medicine (US) Committee on Damp Indoor Spaces and Health (2004). Damp Indoor Spaces and Health. National Academies Press. ISBN 978-0-309-09193-0. PMID 25009878. Archived from the original on January 19, 2023. Retrieved March 30, 2024.[page needed]
  130. ^ "Indoor Environmental Quality". Washington, DC: US National Institute for Occupational Safety and Health. Archived from the original on December 3, 2013. Retrieved May 17, 2013.
  131. ^ Lewis, Alastair C; Allan, James; Carslaw, David; Carruthers, David; Fuller, Gary; Harrison, Roy; Heal, Mathew; Nemitz, Eiko; Reeves, Claire (2022). Indoor Air Quality (PDF) (Report). Air Quality Expert Group. doi:10.5281/zenodo.6523605. Archived (PDF) from the original on June 5, 2023. Retrieved April 15, 2024.
  132. ^ "Isiaq.Org". International Society of Indoor Air Quality and Climate. Archived from the original on January 21, 2022. Retrieved March 2, 2012.

Sources

[edit]
Monographs
  • May, Jeffrey C.; Connie L. May; Ouellette, John J.; Reed, Charles E. (2004). The mold survival guide for your home and for your health. Baltimore: Johns Hopkins University Press. ISBN 978-0-8018-7938-8.
  • May, Jeffrey C. (2001). My house is killing me! : the home guide for families with allergies and asthma. Baltimore: The Johns Hopkins University Press. ISBN 978-0-8018-6730-9.
  • May, Jeffrey C. (2006). My office is killing me! : the sick building survival guide. Baltimore: The Johns Hopkins University Press. ISBN 978-0-8018-8342-2.
  • Salthammer, T., ed. (1999). Organic Indoor Air Pollutants — Occurrence, Measurement, Evaluation. Wiley-VCH. ISBN 978-3-527-29622-4.
  • Spengler, J.D.; Samet, J.M. (1991). Indoor air pollution: A health perspective. Baltimore: Johns Hopkins University Press. ISBN 978-0-8018-4125-5.
  • Samet, J.M.; McCarthy, J.F. (2001). Indoor Air Quality Handbook. NY: McGraw–Hill. ISBN 978-0-07-445549-4.
  • Tichenor, B. (1996). Characterizing Sources of Indoor Air Pollution and Related Sink Effects. ASTM STP 1287. West Conshohocken, PA: ASTM. ISBN 978-0-8031-2030-3.
  • Zeeb, Hajo; Shannoun, Ferid, eds. (2009). WHO Handbook on Indoor Radon: A Public Health Perspective. World Health Organization. ISBN 978-92-4-154767-3. PMID 23762967. NBK143216. Archived from the original on March 30, 2024. Retrieved March 30, 2024.
Articles, radio segments, web pages
  • Apte, M. G.; Buchanan, I. S. H.; Mendell, M. J. (April 2008). "Outdoor ozone and building-related symptoms in the BASE study". Indoor Air. 18 (2): 156–170. Bibcode:2008InAir..18..156A. doi:10.1111/j.1600-0668.2008.00521.x. PMID 18333994.
  • Bad In-Flight Air Exacerbated by Passengers Archived December 15, 2021, at the Wayback Machine, Talk of the Nation, National Public Radio, September 21, 2007.
  • Indoor Air Pollution index page, United States Environmental Protection Agency.
  • Steinemann, Anne (2017). "Ten questions concerning air fresheners and indoor built environments". Building and Environment. 111: 279–284. Bibcode:2017BuEnv.111..279S. doi:10.1016/j.buildenv.2016.11.009. hdl:11343/121890.

Further reading

[edit]
  • Lin, Y.; Zou, J.; Yang, W.; Li, C. Q. (2018). "A Review of Recent Advances in Research on PM2.5 in China". International Journal of Environmental Research and Public Health. 15 (3): 438. doi:10.3390/ijerph15030438. PMC 5876983. PMID 29498704.
  • Abdel Hameed, A. A.; Yasser, I. H.; Khoder, I. M. (2004). "Indoor air quality during renovation actions: a case study". Journal of Environmental Monitoring. 6 (9): 740–744. doi:10.1039/b402995j. PMID 15346177.
[edit]
  • US Environmental Protection Agency info on IAQ
  • Best Practices for Indoor Air Quality when Remodeling Your Home, US EPA
  • Addressing Indoor Environmental Concerns During Remodeling, US EPA
  • Renovation and Repair, Part of Indoor Air Quality Design Tools for Schools, US EPA
  • The 9 Foundations of a Healthy Building, Harvard T.H. Chan School of Public Health

 

Photo
Photo
Photo

Driving Directions in Tulsa County


Driving Directions From Waffle House to Durham Supply Inc
Driving Directions From Catoosa to Durham Supply Inc
Driving Directions From Harmon Security Group LLC. to Durham Supply Inc
Driving Directions From Country Inn & Suites by Radisson, Tulsa, OK to Durham Supply Inc
Driving Directions From Camp Bow Wow to Durham Supply Inc
Driving Directions From Bob Dylan Center to Durham Supply Inc
Driving Directions From Guthrie Green to Durham Supply Inc
Driving Directions From Tulsa Botanic Garden to Durham Supply Inc
Driving Directions From Philbrook Museum of Art to Durham Supply Inc
Driving Directions From Tours of Tulsa to Durham Supply Inc
Driving Directions From The Outsiders House Museum to Durham Supply Inc

Reviews for Durham Supply Inc


Durham Supply Inc

Gerald Clifford Brewster

(5)

We will see, the storm door I bought says on the tag it's 36x80, but it's 34x80. If they return it.......they had no problems returning it. And it was no fault of there's, you measure a mobile home door different than a standard door!

Durham Supply Inc

Ty Spears

(5)

Bought a door/storm door combo. Turns out it was the wrong size. They swapped it out, quick and easy no problems. Very helpful in explaining the size differences from standard door sizes.

Durham Supply Inc

Ethel Schiller

(5)

This place is really neat, if they don't have it they can order it from another of their stores and have it there overnight in most cases. Even hard to find items for a trailer! I definitely recommend this place to everyone! O and the prices is awesome too!

Durham Supply Inc

B Mann

(5)

I was in need of some items for a double wide that I am remodeling and this place is the only place in town that had what I needed ( I didn't even try the other rude place )while I was there I learned the other place that was in Tulsa that also sold mobile home supplies went out of business (no wonder the last time I was in there they were VERY RUDE and high priced) I like the way Dunham does business they answered all my questions and got me the supplies I needed, very friendly, I will be back to purchase the rest of my items when the time comes.

Durham Supply Inc

Dennis Champion

(5)

Durham supply and Royal supply seems to find the most helpful and friendly people to work in their stores, we are based out of Kansas City out here for a few remodels and these guys treated us like we've gone there for years.

View GBP

Frequently Asked Questions

To ensure compatibility, start by consulting the product manuals of each component for any manufacturer guidelines on compatible products. Check if there are industry standards or certifications that apply to all your chosen components. Additionally, consider working with an HVAC professional who can verify compatibility and optimize the setup based on experience with different brands.
Potential issues include communication errors between components, inefficient operation due to mismatched capacities or specifications, and voided warranties from manufacturers. Ensure all components operate at similar efficiency levels and follow recommended maintenance practices to mitigate these risks.
Yes, mixing brands can affect energy efficiency if the components are not well-matched. Differences in SEER (Seasonal Energy Efficiency Ratio) ratings or other performance metrics can lead to inefficiencies. It’s essential to select components that complement each other’s performance characteristics to maintain optimal energy efficiency across the system.